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Abstract. We consider the problem of self-similar viscous limits for general systems of conservation
laws. First, we give conditions so that the resulting boundary value problem admits solutions. In
particular this covers the class of symmetric hyperbolic systems. Second, we show that if the
system is strictly hyperbolic and the Riemann data are sufficiently close then the resulting family
of solutions is of uniformly bounded variation and oscillation. Third, we construct solutions of the
Riemann problem via self-similar viscous limits and study the structure of the emerging solution
and the relation of self-similar viscous limits and shock profiles. The emerging solution consists of
N wave fans separated by constant states. Each wave fan is associated with one of the characteristic
fields and consists of a rarefaction, a shock, or an alternating sequence of shocks and rarefactions
so that each shock adjacent to a rarefaction on one side is a contact discontinuity on that side.

1. Introduction

Consider the system of conservation laws in one space dimension
(1.1) U+ 0, FU)=0

where z € IR, t > 0, U(z,t) takes values in IRV and the flux function F : RY — R is
assumed smooth. If the matrix VF(U) has real and distinct eigenvalues then (1.1) is called strictly

hyperbolic, and its eigenvalues (called characteristic speeds) may be ordered
(1.2) : M(U) < A2U)<...< An(D).

Let r1(U), ..., rn(U) and 1 (U), ..., In(U) be the corresponding right and left eigenvectors. They
are linearly independent and form a pair of local bases in the state space.
The Riemann problem consists of solving (1.1) subject to data a single jump discontinuity

U. z<0
U+ >0

(1.3) U(z,0)= {
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It describes the local structure of BV solutions at points of shock interactions (DiPerna [Dp],
Liu [Lis]) and serves as a building block for solving the Cauchy problem via the Glimm scheme
(Glimm [G]). In solving the Riemann problem one encounters loss of uniqueness that has to be
accounted for by imposing admissibility restrictions on solutions. For weak waves in strictly hy-
perbolic systems it suffices to impose such restrictions only at shocks. Lax [La;] in the genuinely
nonlinear case and Liu [Li;, Liy] in the general case provided comprehensive shock-admissibility
criteria and obtained a unique solution of (1.1), (1.3) for weak waves. The reader is referred to
Dafermos [D3] for a thorough discussion of the issue of admissibility. The solution of the Riemann
problem is based on the invariance of (1.1), (1.3) under dilations of the independent variables
(z,t) — (az ,at), for @ > 0. Because of the expected uniqueness, one seeks for solutions U = U €3]
functions of the single variable £ = 2. The function U is a weak solution of the boundary value

problem (P)
—tU' +F(U) =0
(P)
U(xo0) = Us

subject to admissibility conditions on shocks. The classical solution of (P) consists of two steps:
First special solutions of rarefaction waves, shock waves and contact discontinuities are studied,
and are used to construct the elementary wave curves. There is one elementary curve associated
with each characteristic field with the parametrization of the curve serving as a measure of the
strength of the associated wave. Second, it is shown that the compound curves emanating from a
fixed U_ give rise to an invertible map that covers a full neighborhood of right end states U, (c.f.
[Lay, Lig]).

The objective of this article is to obtain the complete solution of the Riemann problem for

weak waves by an alternative approach, in the spirit of viscosity methods. Namely, admissible

solutions of (P) are constructed as € \, 0 limits of solutions to the problem (Pc)

—¢U' + F(U) =eU"

(Pe)
U (d:oo) = Ui N

with € > 0. The latter consists of an elliptic regularization of the Riemann operator in (P). This
approach is usually called self-similar viscous limits and was proposed by Dafermos [D1], who
motivated it by introducing an artificial ”viscosity” regularization that preserves the invariance
under dilations of coordinates. The study of the Riemann problem amounts to performing the
following steps:

(i) To construct solutions of the problem (P,), with € > 0 fixed.
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(ii) To construct solutions of (P) as € \, 0 limits of solutions of (7).
(iii) To study the structure of the emerging solution.

Our interest in (P.) stems from the connection with the problem of viscous limits. For the

system of viscous conservation laws
(1.4) U + 8, F(U) =ed2U

subject to Riemann data, the invariance under dilations (z,t) — (az,at), a > 0, no longer holds.

It is a simple calculation to see that the solution U* of (1.3 — 1.4) can be expressed as
(15) Ut(a,1) = V(5,-7)
where V (&, s) satisfies

(1.6) Vi—Vee==(—€&Ve+ F(V)e)

%=

for —00 < £ < 00, —00 < 8 < 0. Therefore, the viscous limit problem for Riemann data is a two
parameter problem and studying the limit of U¢ as € | 0 amounts to studying the limit of V (¢, s)
as s T 0—. The problem (P.) arises when feplacing the parabolic operator in (1.6) by an elliptic
operator; its study is expected to provide insight on the difficult problem of viscous limits. The
two regularizations have been compared for Burgers’ equation (Slemrod [S;]).

The notion of self-similar viscous limits appears in the articles [Ka], [Tu;], [Tuz}, [D1]. Tupciev
[Tu;, Tuy) used them to formally motivate a shock admissibility condition for the Riemann problem,
that amounts to the requirement that admissible shocks have associated shock profiles. The direct
-use of self-similar viscous limits is initiated by Dafermos [Dy, D;] who proposed it as an admissibility
criterion and devised a versatile framework for treating the analytical aspects of the problem. The
approach has been tried on several examples of strictly hyperbolic 2 x 2 systems [D;, DDp, KKr,
STz, Tz2], on a system of two equations that exhibits change of type [S1, Fay], and on the fluid
dynamic limit for the Broadwell model [STzz, Tz;]. It has been established at the level of such
examples [D,, Fa;, Tz,] that it dictates the same structure for the Riemann problem solution
as that obtained by the usual shock-admissibility criteria, or by requesting that each admissible
shock has an associated viscous shock profile. In contrast to most admissibility criteria, self-
similar viscous limits penalize the whole wave-fan simultaneously. (It would be interesting to try
the method in one of the examples where the requirement that each shock has an associated profile
is not sufficient to guarantee uniqueness). Based on that fact, a fitting terminology would be to

call admissibility via self-similar viscous limits as the viscous wave-fan admissibility criterion.
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Here, we pursue the method for strictly hyperbolic systems of more than two equations. We
address the questions of existence, performing the ¢ — 0 limit, and structure of the emerging
solution. The key step lies in controlling the diffusion induced wave interactions and obtaining
uniform variation estimates for solutions of (P.). The article is organized as follows:

In Section 2 we study the question of existence of solutions for (P.). We show that for any
system equipped with an L” estimate the problem (P.) admits solutions for each ¢ > 0. The
analysis applies to the class of symmetric hyperbolic systems.

Sections 3 to 7 are the core of the article dealing with the question of obtaining uniform
variation estimates for families of solutions to (P.). Even for Riemann data, waves of different
families can interact through diffusion and contribute to the total variation. Therefore, one has to
devise a scheme for measuring the variation of the solution (through the individual waves) and to
calculate the effects of wave interactions. We refer to Section 3, which serves as an introduction
to this part, for an outline of our strategy. The outcome is summarized in Theorem 3.1 and states
that if (1.1) is strictly hyperbolic and the data Uy are such that [Uy — U—| is small, then (P.) has
solutions that are of uniformly bounded and small oscillation and variation.

In Sections 8, 9 and 10 we solve the Riemann problem for strictly hyperbolic systems via self-
similar viscous limits, under the sole hypothesis that |Uy — U_| is small. The variation estimates
of Section 7 are used in Section 8 to establish the ¢ — 0 limit and, more important, to study
the structure of the emerging solution U of (P). It turns out that U consists of N wave fans
separated by constant states. Each wave fan is associated with one of the characteristic fields and
is either a rarefaction, or a shock satisfying a weak form of the Lax conditions, or a composite
wave consisting of an alternating sequence of shocks and rarefactions so that each shock adjacent
to a rarefaction on one side is a contact discontinuity on that side. In Section 9 it is shown that
for shocks that do not correspond to linearly degenerate characteristic fields solutions of (P,) have
the internal structure of traveling waves. Finally, in Section 10 we compare the outcome of the
solution via self-similar limits to the classical solution of the Riemann problem [La;, Li;, Li).
Both for genuinely nonlinear systems as well as for general strictly hyperbolic systems, the same
structure results for the Riemann solution. The relation with the Liu shock admissibility criterion
is indirect, and follows from the fact that (a strict version of) the Liu shock-admissibility criterion
is equivalent to the requirement that admissible shocks have associated shock profiles (Liu [Lis],

Majda and Pego [MP]).




2. Existence of Connecting Trajectories for (P,)

The objective of this section is to construct solutions of the problem (P,), for ¢ positive fixed.
(P¢) is a boundary-value problem for a system of non-autonomous ordinary differential equations.
First, it is shown that L estimates are sufficient to establish existence of solutions for (P;). Then a
construction scheme, originally proposed by Dafermos [D;], is presented in Section 2.2. Existence
of connecting trajectories then relies on a-priori estimates, which are established in Section 2.3
under various structural hypotheses on (1.1). Most notably, the analysis applies to the class of

symmetric hyperbolic systems.

2.1. Preliminaries. Assume that U is a classical solution of (P¢) satisfying the bound

(2.1) sup |U(§)|< M.
—00< <00

where M is a constant that may depend on ¢. Integrating the differential equation

(2.2) | eU" = —£U' + F(U)

it is easily seen that U satisfies the identities

2 2 € .2
(2.3) Ue) = U + % [ EVRUO U,
and
i 3
(2.4) SU'(E) = eU'0) + FU(©) - €U(O) - FUO) + | U(Q)dc.

Using (2.1), (2.3) and Gronwall’s inequality, we obtain
(2:5) ()] < U"(0)] Plel=972,

where a := sup |VF(V)|.
VisMm

Integrating (2.3) over (—/€, /€) and performing a change of variables in the resulting integrals,

we arrive at the identity
0o [ i = 2 0/e)- v(-v8)
-1 Ve
1 1
(2.6) +3FEO) [ el [ puvee) o

! L (¢*-€%)/2
* 6/_1/0 Ce F(U(VEC)) d¢de.
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In turn, this leads to

o) [ e < L[ VE WA - u(-vE)

1 f 2 2
@n v s [POCED (@42 [ [P dce)]
< —g (M + sup |F(V)]).
VISM

On the other hand (2,1), (2.4) and (2.7) give
(29) 01 < Z 1 +1g).

Relations (2.5), (2.7) and (2.8) imply that any solution obeying the bound (2.1) will also

satisfy the first derivative estimates

< €] < 2
! € —

In (2.9) the constants C and a depend only on  sup |U(§)|, while the exponent becomes
—~o00<€< 00

negative for |£| > 2a. In addition, (2.2) yields
1
(210) 0] < 2 (a+ 1) WE),

which in conjunction with (2.9) provides an estimate for the second derivatives.

2.2. The Construction Scheme. Let ¢ € (0,1] be fixed and consider the two-parameter

family of boundary-value problems
~EU' + pFU) = eU" -l<Exl
(2.11)
U(xl) = pUx

with parameters g € [0,1],1 > 1. The following theorem [Dy, p.3] provides sufficient conditions

that guarantee the existence of solutions for (P.). We outline its proof for the sake of completeness.

Theorem 2.1 Assume that there is a constant M depending at most on U_, Uy, the function

F(U) and ¢ (but independent of u and |), such that any solution U() of (2.11) satisfies the bound

(2.12) sup [U(E)] < M.
—-1<¢<l

Then, there ezists a classical solution of (P.) denoted again by U() and defined on (—o0,00).
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Proof. First, solutions of (2.11) are constructed by means of a continuation argument. Given a

smooth function V the solution W of the boundary-value problem

eW'(O)+EW(€)=F(V()  -1<€<l,

(2.13)
W(=l)=U_, W(+l) = U,

is computed by the formula

13 2 £
W(E) = U- + Us / et / F(V(¢)) d¢
(2.14) -t - '

£ ¢ a2
— 8—12—/'/ re 2z F(V(r))drd(,
-tJo

where the constant Uy € RV is calculated by

., !
0 [ eSag= (- [ VO

(2.15) U e
+-57/;1/o e~ 2= F(V(r))drd(.

Set X = C°([-1,1];IRY) and
Q:={UeX: sup [U)|<M+1}.
—igg<l

X with the sup-norm is a Banach space and § is a bounded, open subset of X. Consider the
map T : § — X carrying V € Q to W = T(V) defined by the relations (2.14) and (2.15). T is
compact and continuous, and classical solutions of (2.11) are identified with fixed points of uT.
The map I —uT : 2 x[0,1] — X satisfies the hypotheses of the Schaeffer fixed-point theorem (e.g.
Rabinowitz [R, Ch V]). Hence, for each u € (0, 1] there is at least one solution of the equation
U - uT(U) =0 in the set Q.

Let now U(-;!) denote a solution of (2.11) for p = 1. In the last step, solutions of (P,) are
constructed as [ — oo limits of U(-;Il). Proceeding as in the derivation of (2.9) and (2.10), it

follows that such solutions satisfy the bounds (2.12) and

[U'(&;D1 < ¢ o(2alEl=€7)/2¢
(2.16) :

— g2 e
U"(€: D] < o5 (1+ ¢]) e*olEI=€72

with C and a depending on M but not on I. Extend U(-;!) outside [—!,[] by setting U(§;1) = U-
for ¢ < —l and U(€;1) = U; for £ > I. The Ascoli-Arzela theorem, together with a diagonal
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argument, implies the existence of a sequence {I,,}, !, — o, and a function U € C 1((—o00,00); IRN)
such that U(-;1,) — U and U'(-;1;) — U’ uniformly on compact subsets of IR. Because of (2.16)
the convergence is uniform on IR and U(4o00) = Uy4. Passing to the limit I, — oo shows that U is

a classical solution of (P.). g

2.3 The a-priori estimates. The scope of this section is to provide the sup-norm estimates
that authorize application of Theorem 2.1. In the sequel, U(£) stands for a solution of the family
of boundary-value problems (2.11) defined on [—/,!] and depending implicitly on x, ! and ¢. In the
process of estimating U(£) we pursue ideas that were developed by Dafermos and DiPerna [DDp]
in the context of 2 x 2 systems and use the concept of entropy-entropy flux pairs (Lax [Las]).

A scalar-valued function n(U) is called an entropy for (1.1), with corresponding entropy flux

q(U), if every smooth solution satisfies the additional conservation law

(2.17) Am(U)+ 0-q(U) =0

Such pairs (n(U), ¢(U)) are generated by solving the system of (linear) differential equations
(2.18) Vq(U) = V(U) VF(U).

Trivial examples of solutions are provided by (¢- U, ¢- F(U)), with ¢ any constant vector in RN,
Since (2.18) is overdetermined for N > 3, for systems of three or more equations the existence
of (nontrivial) entropies is the exception rather than the rule. Nevertheless, specific systems that
arise in applications are often naturally endowed with some entropy-entropy flux pairs. Also, the
class of symmetric hyperbolic systems, that is systems for which VF(U) is a symmetric matrix,

admits the pair
1
(219) WU)=30P  oU)=U-FO) - g(U),

where g is a potential for F satisfying F(U) = Vg(U).
Let (n(U),q(U)) be an entropy-entropy flux pair for (1.1). Using (2.18) we deduce that
solutions of (2.11) satisfy the identity

(2:20) €0 +pg =en"—cU' (V) U’

where 7 = (U(€)), ¢ = q(U(€)). In exploiting (2.20), it is helpful to use entropy functions
7(U) that are convex (or linear). The following lemma indicates how to bound the total entropy

production. Given a constant entropy level 7, consider the level set
(2.21) Cp={UeRN:yU)=7q}.
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If C is nonempty, let

(2.22) Qna= sup |g(Uy) - q(U2)]

U!. ’U2 Ecq

be the oscillation of ¢(U) on the level set C5.

Lemma 2.2. Assume that n(U) is a convez entropy with corresponding entropy fluz q(U). If 7 is

any constant such that

(2.23) 7> max {n(uU-),n(nU+)}

then for any (a,B) C (-1,1)

B
(224) | awen-n sk,
where K = Q5 if n(U(€)) > 7 for some £ € (o, ), and K = 0 otherwise.

Proof. The proof is based on the following observation. Let 7} be a fixed entropy level and suppose

that a, b are two points in (—/,!) with the properties a < b and
(2.25) n(U(a))=nU®)=7 with (noU)(a)>0, (noU)(b)<0.

Integrating (2.20) over [a, b], we obtain

. 5 ,
(2.26) / (W(U(f)) - 7_]) d¢ + g/ U’(f) . V2’I7(U(f)) U'(f) de
< “u[(U) - aU(@)] < @,

which, upon using the convexity of 7(U), yields

b
@21) | (wen-n)de < @

If n(U(€)) < 7jfor =1 < € < 1, then (2.24) is trivially true with K = 0. So suppose that the
set {£€ € (=1,1): 9(U(€)) > 7} is nonempty. It is also open and thus admits a decomposition into

a countable union of disjoint subintervals
(2:28) {ee LD nUE)> 7} = (e b),

kel
where k ranges over an index set I (either a finite set or the integers). For 7 restricted by (2.23)
the points ax and by lie in (—!,1). Also, since n(U(£)) > 7 for a < £ < by with k € I, relations
(2.25) are satisfied at the endpoints a , bg.




Given any (a, 8) C (=1,1), choose a, b as follows: If n(U(a)) > 7 set @ = sup{ax < a}, while
if (U(a)) < 7 set a = inf{ax > a}; if p(U(B)) > # set b = inf{bx > B}, while if n(U(B)) < 7 set
b = sup{by < B}. I n(U(£)) > 7 at some £ € (a,f), a and b are well defined, a < b, relations
(2.25) are satisfied at a, b and

B b
(2:29 [ awey-nde< [ @we)-nd< .

«
Otherwise (2.24) holds with K = 0. g
" In general the quantity Q; depends on the form of the level set C; as well as the function
q(U) a.nd'ma,y be infinite. If it happens that C; is a compact set, then Qy is finite and (2.24)
provides an integral estimate independent of i,/ and . An entropy is called normal if 7(U) — oo
as |U} — oo. If the system (1.1) is endowed with a convex normal entropy, then nonempty level
sets C; are compact, and that leads to integral estimates of the type (2.24). For a symmetric
hyperbolic system (U) = 1|U|? is an example of a convex normal entropy. v
Next, we present two approaches for obtaining the sup-norm estimates (2.12). The first exploits
the entropy identity (2.20), and requires the existence of a strictly convex, normal entropy function

n(U), defined (only) on the exterior of some open ball in the state space.

Proposition 2.3. Assume that (1.1) admits a strictly convez, normal entropy n(U) defined on

the ezterior of a ball and satisfying the growth restriction: There are ¢ > 0 and positive constants

C and r¢ such that
(H) V(D) < Co(U)n(UY*~?  for |U| 2o,

where v(U) is the smallest eigenvalue of the Hessian V2n(U). Then solutions of (P.) ezist for

every € > 0.

Proof. Let n(U) be a strictly convex, normal entropy defined for {U € RY : |U| > ro} and
satisfying (H) for some ¢ > 0. Without loss of generality we may assume that n(U) is positive.
Let U(£) be a solution of (2.11) on (—/,1). For those £ that |U(£)] > o equation (2.20) is satisfied.

Let r > max{|U4|,|U_|,ro} and 7, = maxyyj=, 7(U) be fixed and choose two entropy levels

2 > 1 > i > 0. Consider the set
(230) A={€e(-L,1):n(U)> M, UEI>r}.

Since p(U) — oo as |U| — oo, if the set A is empty then sup_,c¢<; |U(€)] < M, for some M
depending on #j; and r, and thus (2.12) holds in this case. So, assume that A is nonempty. It is
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also open and thus admits the decomposition A = U;¢(ax,bx) into a countable (or finite) union
of disjoint intervals. In addition the choice 7} > #, implies that, for any k € I,
n(U(f)) >, for ap < €<bg,
(2.31) ) , '
n(U(ax)) = n(U(b)) =72 and (noU)(ax) 20, (noU)(bs)<0.

Henceforth we focus on a fixed interval (ax,bx). Let 7x be a point where n(U(€)) assumes
its maximum in the closed interval [ax,by]). Using Schwarz’s inequality, the strict convexity of 7,

hypothesis (H) and relations (2.31), (2.25) and (2.26) we obtain

(2/9) [n(U(r))¥ - n(U(ax))?] = / " U(O)E V(U Q) U'(C) de

Gk

(.32 <[ A wnweract? ([ oo vaoowo )}

1.1 1
<l [t G o)}
ax
For those U € IRY that nU) > 7z > > 0, it is
(2.33) 70y -7 > B0 - ().

Then (2.32) yields the estimate

_C__
(2 —

Set a = inf{€ € (=1,ax) : n(U(()) > Mon(§,ar)}, b= sup{€ € (bx, 1) : n(U({)) > 71 on (bx, &)}
Since |U(£!)| < r and 1 > #r, a, b are well defined and satisfy -l < a < ay < by <b< . In
addition (2.25) holds and, as in the proof of Lemma 2.2,

31) a0 < W+ 0D (Gt @) ([ () - myao)?

Tk b
(2.35) | ) -mya < [ (aw©)-m)de < Q.

k

As a consequence, the right hand side of (2.34) is bounded independently of &, and (2.12) holds in

the case that A is nonempty too. The conclusion now follows from Theorem 2.1. g

Regarding the growth assumption (H) the following remarks are in order. If the strictly

convex, normal entropy function is of the form n(U) = (1/p) |U|P, with p > 1, one easily calculates
(2.36) Vo) =UP2U,  VU)=|UP*I+(p-2)|UP*URU.

The Hessian of 7 is a positive definite matrix having eigenvalues: (p—1){U|P~? with corresponding

eigenvector U, and |U[P~% of multiplicity N — 1 with corresponding eigenvectors UL any vector
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orthogonal to U. Hypothesis (H) is then satisfied with ¢ = 2. On the other hand, if n(U) grows

like a power up to first order derivatives, i.e.,
1
(2.37) P <n(@) <dUP,  [Va(U)] < U,

for some positive constant ¢, then (H) becomes a restriction on the decay 6f the minimum eigenvalue
for U large and is satisfied provided that »(U) > |U|™* for some s < p + 2.

As a consequence of the above remarks in conjunction with Proposition 2.3, we have.

Theorem 2.4. If (1.1) is a symmelric hyperbolic system, then solutions of (P.) exist for every

e>0.

In the interest of developing technique, we present an alternative way for establishing (2.12)
for symmetric hyperbolic systems. The actual result is weaker than Theorem 2.4, as it requires a

growth assumption on the flux F(U), but the approach may be useful for other problems.

Proposition 2.5. Suppose that (1.1) is a symmetric hyperbolic system, such that the fluz function

satisfies the growth assumption
(2.38) |[FU) < C(1+|U])

for some positive constants C and p < 3. Then solutions of (P.) exist for every € > 0.
Proof. Symmetric hyperbolic systems are endowed with the entropy - entropy flux pair (2.19), for
which (2.20) takes the form

(2.39) ~£([UP) +2u (U - F(U) - g(U)) = e (JUI*)" ~ 2 |U"]’

The function g is a potential for F satisfying F(U) = Vg(U). It can be defined by the formula

1 1
(2.40) o(U) = /0 2 g(t0)dt = /0 F@U)-Udt,

where g has been normalized by setting g(0) = 0. Assumption (2.38) induces a growth restriction

on ¢ as follows:
1
(2.41) lg(0)| = l/ F@U)-Udt|<C(1+ |U[)P*.
0

Set r = max{|U_|,|U4+|} and consider any point & € (—I,!) such that |U(£)] > r and
(diU]?/d€)(€) > 0. Define ¢' = inf {¢ € (§1] : |[U()] < |U(€)|} and observe that &' is well
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defined with ¢ < €' < I. Moreover, |U(¢")| = [U(€)], (d|U?/dE)(E') < 0 and |U(C)] > |U(€)] for
£ < ( < ¢'. Integrating (2.39) over [, ¢'], we obtain

!

3 , ¢
_/£ ¢(lUP) (c)d<+2e/€ 10" (O)1* d¢
(2.42) +2u[U(E) - FUE)) - g(U(E")) - U(E) - F(U(£)) + g(U(£))]
= e(d|U[*/dg) (&) - e(dIU*/dE) (&) |

Since ‘
¢ , ¢

(2.43) - [ ©a= [ (v -wer s o,
£ 13

(2.42) together with (2.38) and (2.41) yield

(2.44) AUE ) < sc 1+ U@

3
Note that the bound (2.44) holds for any £ € (—!,1) such that |U(£)| > r.

To conclude the proof fix two levels r; and 7y, with 7o > r; > r, and consider the set
B={¢e€(-L1):|UE&)|>r}. IB isempty then (2.12) holds and Theorem 2.1 implies the
desired result. If B is nonempty, then it can be decomposed into an at most countable union of
disjoint subintervals (ax,bi) such that |U(ax)| = |U(bx)| = r2 and |U(€)| > r; for ar < & < by.
In each of the intervals [ak,bx] the differential inequality (2.44) is satisfied. Next, fix ¥ and let
Tk € [ak,br] be a point where |U(7t)| = max,, <e<p, [U(€)]. Lemma 2.2, applied for the entropy
7(U) = |U|? and the level 4 = 7}, implies

(2.45) [ v - de <@ < oo.

Since the ratio |U|'~?P(1 + [U])!*?/(|U}? - r?) remains bounded for |U| > 7,, using (2.44) and
(2.45) we deduce

d|U|? o [ '
< [ wer-rae<co,.

In turn, performing the integration in (2.46) yields

(2.46) ¢ /n wE©r-»

(2.47) UEP? < (7 + 2 20rq,y,

for p < 3, and

(2.48) |U(ri)] < rae” 43/

’

for p = 3. In either case (2.12) holds and proof is complete. g
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3. Solution decomposition - The main result

The aim of this article is to construct solutions of the Riemann problem (P) as ¢ — 0 limits
of solutions of (P,). The central difficulty lies in obtaining e-independent variation estimates for
families of solutions of the problems (P.). The reason is that, even for Riemann data, there
are wave interactions induced by the coupling through the self-similar viscosity that need to be
accounted for. The derivation of the variation estimates follows from a lengthy analysis, carried
out in Sections 3-7. The present section serves as an introduction, where we outline the general
strategy, introduce the main hypotheses, and present certain interesting geometric properties.

Our approach is motivated by a detailed study of the following question: Suppose we are given
a family of solutions to (P,) of uniformly small oscillation
(Co) sup |U(§)-U-|<p .

~00<€< 00
Such a family would also satisfy uniform L* bounds
(Cs) sup |Ue(§)| < M,
~00<{<0
where the constants M and u are independent of ¢ and p is also small. Examine under what

structural hypotheses on (1.1) the family {U,},>0 is of uniformly bounded variation
(S) TV(—oo,oo) Ue < C.

It is instructive to give a proof of (§) for the single conservation law, which contains some
ingredients of the approach followed for systems. Let {u.}.>o be a family of scalar-valued function
satisfying
3.1) eug = —€u, + fue)

ue(£o0) = uy .
and the uniform bounds (C;) (which are easily justifiable in this case). Let A(u) = f'(u) be the
characteristic speed of the associated hyperbolic equation. It is easy to see that solutions of (3.1)
satisfy the representation formula
e~ T9:(6)

f—o-ooo e_%gc(()dC

(3.2) ul(€) = (ug —uo)
where

13
(3.3) g:(&) = / s — A(ue(s)) ds.
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From the form of (3.2), it follows that {ul} are uniformly bounded in L' and thus {u.} is of
uniformly bounded variation.
Returning to the general case, we note that the system (1.1) is assumed strictly hyperbolic,

but no other structural assumptions are imposed. The eigenvalues of VF(U) are denoted by
(34) Al(U) < A2(U) < ... < /\N(U)

and are ordered. The corresponding right eigenvectors r1(U), ..., rn(U) and left eigenvectors

L(U), ..., In(U) are linearly independent and satisfy the relations

(3.5) VEU)ri(U) = Ai(U)r(U),
(3.6) L(U)-VFU) = x(U)1(U),
(3.7) L(U)-r;(U) = {‘;0 27__&; .

{r;} and {I;} form a pair of local bases in the state space IR"Y. By normalizing one of these bases

we can attain
(3.8) l,‘(U) . Tj(U) = 6,'_,' .

The family {U.}e>0 consists of solutions to the boundary value problem (P.) that connect
two fixed end states U_ and U;. Conditions that guarantee existence of solutions for (P,) are
given in Section 2; nevertheless, the forthcoming analysis is independent of such considerations,
and eventually it will also suggest a construction ’scheme. We assume the members of {U.}cso
satisfy the hypothesis (C,) of uniformly in £ small oscillation and (a-fortiori) the uniform bound

(Cs). That restricts the data Uy to satisfy
(Hp) U -U_|<r
with r sufficiently small. Also, each wave speed is bounded

(3.9) A= < Ak (Ue(€)) < Aky

by constants Ax_, Axy independent of €. By choosing g sufficiently small, we guarantee that the

wave speeds are totally separated along the family {U.}c>0, that is
(3 10) A1 < /\1(U€(§)) < /\1+ <A < /\2(U€(f)) < /\2+ < ...
< AN-1)- € AN=1(U(8)) € An-1)4+ < AN= S AN(U:(E)) < Ans

15




The bound (C}) implies the derivatives of U, satisfy the estimates (2.9) and (2.10) with the con-
stants C and o independent of ¢. In the sequel we use the following conventions on notation :
The e-dependence will be suppressed from functions, except at places where emphasis is needed.
By contrast, any ¢-dependence of constants will be explicitly stated by either recording the precise

dependence or by using ¢ as a subscript.

Consider the decomposition of U! in the basis of right eigenvectors evaluated at the local value
of the solution U,

N

(3.11) ULE) =) ar(&) re(U(8)) -

k=1

The amplitudes ax can be recovered by using (3.8)

(3.12) ar(€) = I(Ue(€)) - UL(§) -

Also, integrating (3.11) over (—o00,00), we have
N oo

(3.13) U -U- =Y [ aOmn(v0) &
k=1 v —®

To compute the equations that aj satisfy, take the inner product of (2.2) with {,(U,) to obtain

—Eak + M(Ue(€)) ar = e Ik(Ue(€)) - U7

(3.14)
= eal — e ViR(U.(€))U.- U,

and hence

N N
(315)  edp+ [E- MU ar=¢ Y D [VI(UAE)) rm(Ue(€) - ra(Ue(£))] Gm @n -

If we introduce the notation
(3.16) Ak = A(Ue(8))
(317) ﬁk,mn - ﬂk,mn(Us(f)) = Vlk(Ue(é)) Tm(Us(f)) : Tn(Ue(f))

then a; satisfy the coupled system of ordinary differential equations with variable coefficients

N N
(3.18) e+ (E—M)ar =€ D > PBrmnlman-

m=1n=1
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At this point several remarks are in order. First, the decomposition (3.11) is partly motivated
by the classical solution of the Riemann problem (Lax [La;], Liu [Liz]). It is expected to capture the
behavior near rarefactions, but it is not a-priori clear that it should work well near shocks. Good
overall performance would indicate that (3.11) captures the nature of diffusion induced averaging
at a shock. The coefficients Sk ., depend on the solution and on geometric characteristics of the
surface § = F(U). The quadratic terms in (3.18) represent the effect induced on the k-family by
interactions of waves of all the families, and Bj m, measure the weights of such contributions. By

virtue of (Cy), Bk, mn are uniformly bounded

(3.19) |Bk,mn| < B.

Let gx be the antiderivative of

(3.20) 9k = &= M = €~ M(Ue(8))

defined within an arbitrary constant of integration by

4
(3.21) g = / s = Me(Ue(s)) ds
In view of (3.9), it is
(3.22) 8= At 5= A(Ue(8)) £ 8 — Ak

which in turn implies g; > 0 for £ > Ay , gf < 0 for € < Ae_, and g looks like a potential-
well function (see Figure 1). Let pi. be a point where g attains its global minimum, 9k(pre) =
min gx(§). Then A\x_ < pr. < Mgy while the value of 9k(pke) depends on the choice of the arbitrary
constant in (3.21). By setting

£
(3.23) gi(§) = / s = Ak(Ue(s)) ds

we attain gi(£) 2 gk(pke) = 0 for £ € IR. Furthermore, Ax(Uc(pre)) = pke and gr(€) = O(|€]?) as
|§] — oo.

Consider the linearization of the system (3.18). It consists of the decoupled system of equations

(3.24) Epr+(E - M) e =0,

whose solutions are constant multiples of

1t 4
o lan . ‘fp’“s Ak (U.(s)) ds

3.25 = -
(3.25) HT e foo ot e

e
—00

d¢
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Due to their form {¢y} are strictly positive functions that are uniformly (in ¢) bounded in L.

FIGURE 1.

A comparison of (3.24) with (3.1) and (3.25) with the representation formula (3.2) shows that,
for the case of the single equation, it is precisely the above step that provides the variation bounds.
Due to the quadratic terms in (3.18) though, this is insufficient for systems of conservation laws.
There are two problems that we need to account for, in the case of systems. First to understand
the effect of the quadratic terms. Second, differential systems like (3.18) are best handled with
pointwise conditions. On the other hand the only existing information (3.13), relating the data Uy
with the amplitudes ay, is of integral type. It is thus necessary to devise a scheme that connects
pointwise with integral information.

We proceed by introducing a decomposition of aj in the form

(3.26) ak = Tk Pk + O,
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where ¢y is given by (3.25) and 6, satisfies the system of differential equations

N N
(3.27) €O+ (E-X)0=6 D D Bromn(Tm@m+0m) (Tn Pn +6n).

m=1n=1

Clearly the sum 7k ¢ + 0x is a solution of (3.18). The idea is to seek an asymptotic expansion
of the wave amplitude a; in a parameter 7 = (7, ..., Tnv), where 7 is thought as a measure of
the strength of the k-th wave, and to construct an expansion uniform in € in the L'-norm. In
this expansion T4y is the leading term and 8y is the error, which should be of order O(|r|?) as
|7l = || + ... + |tn] — 0. Clearly, such an expansion depends on the provided data, and the key
question becomes under what conditions to solve (3.27).

Next, we outline the strategy we follow and the attained results concerning those problems :

Fix ¢1, €2, ... ,¢n to be the respective middle points of the intervals [A1—, A1), [A2—, A24], e

[AN=,AN+]. Given a constant vector T = (11, T3, ..., Tv) € R", we consider (3.27) subject to the
conditions
(3.28) Bi(ck) = 0,

and for || sufficiently small construct a solution 8x(£; 7) that satisfies the estimate

N
(3.29) B(-; IS CITP Y om -
m=1

This construction is performed in Section 5. It is based on detailed estimates, that are presented
in Section 4, on the functions ¢, and on integrals involving ¢, ¢, and capturing wave interac-
tions. The method is to apply the uniform contraction principle to a weighted space of continuous
functions. The selection of the weight is motivated by the analysis of Section 4. The analysis of

Section 5 validates the asymptotic expansion

(3.30) ar(-57) = Tk or(c) + Ok(-: 7)

for the amplitude aj in the parameter 7. Note that a; satisfy the pointwise information
(3.31) ar(ck; T) = Tk pr(ck)

and solve (3.18) but not necessarily (3.13).

The objective of Section 6 is then to show there exists a choice of 7 = (7, ..., 7y) such that
(3.13) is fulfilled. To this end, we consider the map S : RN — IRV that connects the wave
strengths to the boundary data by taking  to

N o0
(3.32) SO =U-+3 [ o0+ 06 1] (U0 dc.
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We show in Section 6 that S is locally invertible in a neighborhood of 7 = 0, and that the inverse
map S~ is uniformly bounded independent of .

In Sections 4 to 6, we identify the precise hypotheses (supplementary to (3.10)), on the behavior
of the wave speeds A and the right and left eigenvectors 74 and I along solutions U, that are
necessary to carry out the intermediate steps. All these hypotheses are fulfilled if the oscillation
of the family {U.}.>¢ is restricted, uniformly in . It is convenient to phrase the analysis by
using a general function V of restricted oscillation, supeg [V(€) — U-| < p, in the place of a
member of {U.}.>o Apart from splitting naturally the various parts of the analysis, this has
another advantage. The considerations of Sections 4 to 6 motivate a construction scheme that
enables us, given Riemann data Uy with |U; — U_| small, to use the Schauder fixed point theorem
and construct solutions U, of (P.) that are of uniformly small oscillation as well as of uniformly
small variation. One interesting feature of the scheme is that it is based on the quadratic equation
(3.18) rather than on a linearized equation. This final part of the analysis is carried out in Section

7. It justifies in particular Hypothesis (C,) and leads to the following theorem.

Theorem 3.1 Assume that (1.1) strictly hyperbolic and let U_ be fized. There ezists v sufficiently
small such that for € > 0 and |Uy —U_| < r the problem (P.) has a solution U, with the properties:
(i) The family {Uc}eso satisfies (C,) with some p independent of €.

(ii) The solutions U, satisfy the representation formula
N

(3.33) UL =" [hepr + k(5 7)] m(Ue)
k=1

where ;. is given by (3.25), 0k(-; T) satisfies (3.29), and 7. solves S(r.) = Uy.
(iii) The family {U!}e>o is uniformly bounded in L'(IR) and {U,}c>o is of uniformly bounded (and

small) variation.

We list below certain geometric properties of the surface S = F(U) relating to the coefficients
Bimn = Vigtm - 4. First, {r;} and {l;} form bases of the tangent and cotangent spaces of the
surface § = F(U) at each U. Let f7 be the components of F' and consider the action of the Hessian
V2 F(a,b) on the vectors a, b € RY. V2F(a,b) is vector-valued with components a- V2 f7b. Since
V2 f3 is symmetric, it follows V2F(a,b) = V2F(b,a). For U fixed, t € IR and a, b € R" equation
(3.6) implies

(3.34) (U +ta) - VF(U + ta)b = A(U + ta) Ix(U + ta) - b.
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Differentiating (3.34) with respect to t and setting t = 0 in the resulting equation, we deduce the
identity

(3.35) Iy - ViF(a,b) = (Vg -a) (Ig - b) = (Viga) - (VF = A 1)b,

which, in turn, yields the well-known identities

I - V2F(rmy ) = (Ve 7)) (k- T0) + Ok = A) (Vi T - 7)

(3.36) _ {(,\k “A)(Vigrm -ts) kE#n
(V/\k'Tm)(lk~1‘k) k=n

The coefficients Si ., are related to the second derivatives Iy - V2F(rm,r,) whenever k£ # m or

k # n. There is also the formula

(3.37) Ak =A) (Vikrkm2) = (Ve ora) (e -mk),  n#k.

The coefficient i xr = Vg7 - 1 does not appear in the above relations. To explain that
consider the effect of renormalizing the eigenvectors on the coefficients Sk m». and especially to
Bk,kx. Let {7} and {ik} be a given set af right and left eigenvectors and set ry = 747, I = skik
where 7 = T4(U) and s = sg(U) renormalizing factors with 7, > 0, sy > 0. A simple computatidn
shows Vi = ik ® Vs, + skVik and thus

Brmn = Vikm - To = TmTn [(Fn - Vk) (T ) + 85 Vik i - #n)
= T Tn [(Fm - V) (T ) + kB mn)

If k # n the renormalization has no effect on the sign of Sk mn. If k = n though the renormalization

(3.38)

of the left eigenvectors has an effect on Bk mx and can make it to be zero.
In particular, if we restrict in the neighborhood of some state U, we can choose a renormal-

ization so that the resulting eigenvectors satisfy simultaneously
(3.39) g =0, Vigry -t =0.
To this end, choose first s; so that

(3.40) (7r - Vi) (I - 74) + 8k Vi f - 7 = 0.

(3.40) is a hyperbolic equation for s;. If we give data for s in a hypersurface S transversal to
the vector field 7, the Cauchy problem for (3.40) has locally a unique solution. If the data are
positive then s; > 0. Following that 7y is chosen so that 7xslx - #x = 1. The resulting {ry}, {l¢}

have the desired properties.
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4. Properties of the functions ¢, - Wave interaction estimates

Let C°(~00,00) stand for the space of the continuous, bounded functions. Consider the set
(4.1) Q={V e C%-o00,0) : sup [V(£) - U_|<p}
€

and suppose that p is sufficiently small so that the wave speeds Ax(V) are bounded and totally

separated for V € Q2 :
(A1) Ae- < Ae(V(E)) < Aest

A= < M(V(E) € Mg <Aoo A (V(€) < Aoy < .-

(42)
: < Avo1)- < Av=1(V(6) € Av-1y+ < An- < AN (V(E)) < Ang

Consider the linearized equation

(4.2) ek + (€= M(V() i = 0.

The fundamental solution of (4.2) may be written in the form

-1 ¢
e 9k 1 -1 ) s—=A(V(s)) ds
(43) Pk = 2, e-taOge TIre ¢ * ’
where
3
gk = / [¢-M(V(()] de,
(4.4) Pk

oo o _3f¢,_ ,
Ikc = / e‘%gk dC — / e © ka Me(V(8)) ds d(’
—00 oo

Recall that g; has the form of a potential-well function (c.f. Figure 1) and that pi is selected

as a point where g achieves its global minimum. As a result p; satisfies Ap— < pr < Agy,

Me(V(pk)) = px and
(4.5) 9x(€) > gr(px) = 0, feR.

The intent of this section is to establish various estimates on the functions ¢ and integrals involving
them, that are needed in the forthcoming constructions.

We begin with a careful analysis of the behavior of ) in the limit ¢ — 0. Given a positive
function h(e), we use the customary notation f(¢) = O(h(e)) as € — 0 to mean there are constants

go sufficiently small and C such that |f(¢)| < C h(e) for 0 < € < &o.
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Lemma 4.1. Suppose the wave speed Ai(V) satisfies (Ay).
() If de = Ak — A= >0, then as e — 0 :

(4.6) —0——2—1—)%_<_Ikegdk+x/27re,

(47 <o) <OM %L, foreeR,

and

(4.8) ei(€) < 0(1)% eT%E M) for g < A,
4.8

er(é) < 0(1)%g e EMD 1 for £ Ay
(ii) If di = )‘k+ — Ak— = 0, then

e 2:(6 Ak— )2

(4.9) Ie =V2re,  @u(€) =

2me

Proof. Assume first that d; > 0. Performing the change of variable ¢ = pi + 1/ 7 in the integral
(4.4), we obtain

[ke_/oo gk(odC \/'/ e ¢9k(Pk+\/—"7)d7)

(4.10) e
- / =3 [P s (V) s in

Using again the change of variable s = py + /¢ T and (4.5), we have

prt+VEN
oot vem =1 [T s nvisas

€ k
(1) = [ {r- Z Da o vED) - v o
>0
We remark that for > 0

P
7

forneR.

(4.12) / r= = Do+ V) - V(i) ) ir < T " 22 Ok = M)

while for 7 < 0

@) [ ro T Vet VE) = MV(p) < T = O = M.
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Therefore (4.10), (4.11), (4.12) and (4.13) provide the estimate

he=ve [ o]~ [ 2 DulV o VED) - MV (o)
+ e [T { - [M 7 Z Vet vET) - Ak<V(pk>>]dr}
>\/geu/ %) dn+\/—em/ REIGE DN

-00 0

Fet (/ - S;d(-k/% ‘;dc).

The asymptotic behavior of the last integrals can be evaluated by using the limits

(4.14)

o] _5.2_ £2
e~ 7d . —e~ T
(4.15) lim J: — C: lim — - =1
T—00 -};6—_2" T-+00 —FC_T —e~ 7
, F e T dC : e
(4.16) lim =2 = lim = =1
r——00 _;e—T T-—+—00 ;IB_T + e— 3

and yields for small ¢

2/ 1 i 4 1\/5_12)_ 1 e
(4.17) Tie 2 Vee (0(1) ¢ T ton @t )T o

Next, observe that for £ > Agy 2> pi

£
a®= [ s= MV (st hus)
(4.18) e .
> A (s — Ay )ds = 5(€ - Mt )

while for € < Ax— < pi

£
w®= [ 8= W(V(s))ds+ou0n0)
(4.19) M- . ,
Z—/£ (s~)\k_)ds:-2-(§—/\k_)2.

Therefore, (4.4) and (4.5) imply

A= o
I < / : 6_515((-)‘&‘)2 d¢ +dip + / e—'zl?(c"A’W)Z d¢
- Ak 4

(4.20) _
=dk+\/g/ e‘%"gdnzdk-{—v%re
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which together with (4.17) complete the proof of (4.6).
Estimates (4.7) and (4.8) follow from

€

1 g:(€) d
(4.21) or(8) = <o(1) % e-tante),
Ik,; £
a consequence of (4.3) and (4.6), in conjunction with (4.5), (4.18) and (4.19). Finally, if dx = 0 then

Ax(V) remains constant, say Ax—, and (4.9) follows from (4.3) and (4.4) via a direct calculation. g

Remark. To expand on the implications of the lemma, suppose we are given a family of functions
{Uc}eso C Q and that for each U, we define the corresponding ¢ solution of (3.24). Then (4.8)
implies that ¢x, — 0 as ¢ — 0 uniformly on any interval of the form (—-o0,ax] U [bg,00) with
ar < Ak— < Mgy < by. The family {pke}eso is uniformly bounded in L! and thus there exists a
subsequence ¢, with ¢, — 0 and a finite Borel measure ¢ with supp ¢x C [Ak—, Ax4+] such that
Pke, — Pk weak-x in measures. For the single conservation law or the equations of isothermal
elasticity, objects similar to ¢; yield the same structure for the Riemann problem solution as that

obtained by the Liu shock admissibility criterion. (¢f Tzavaras [Tz;]).

Our next task is to study certain integrals involving ¢,, and ¢, that calculate the effect of
interactions between elementary waves. It is convenient to introduce the notation:
d; = length of the interval [Ax_, Axq)
cx = middle point of the interval [Ax_, Ay ]
d(&, A\x) = distance between the point ¢ and the interval [Ag., Axy]
Dpmn = d(Am, An) = distance between the intervals [Ap—, Amq] and [An—, Any]
Because of (A3) Dy > 0; also, we may assume without loss of generality that dj > 0 by replacing
(4.9) with the weaker estimates (4.6 — 4.8). Lemma 4.1 indicates that ¢; has the form shown
in Figure 2. The behavior of ¢ is uncontrolled in the interval [Ag_, Ax+], where the wave speed
Ak(V) takes values, but its amplitude is of at most order O(2). For & ¢ [Ak—, Ar+], ¢k decays like
o e‘il?d“"\")z). It is expedient to fix points ag, bk, kK =1, ..., N, such that

a1 < A= SAhp <by<ar <Am <Ay <ba <.
(4.22)
<an-1 < ’\(N—l)— < ’\(N—-l)+ <by_1<an<An_<X ANt < by,

and introduce the notation
1
(4.23) sk(e) = max ¢r(£), oy = — min{|ax — /\k_|2, |ox — )\k+|2} .
£€[ar ,bx) 2
Then (4.8) implies
1
(4:24) or(€) < sk(e) S dO(z ™), £ ¢ [anbal,
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and sy (€) serves as a global bound outside the main support of the wave. The function by = le a

describing the decay rate as ¢ — 0, has the behavior: hy increases from 0 to its maximum value,

achieved at € = a; and equal to 1/e ay, and then decreases down to 0 as € — oo.

¢, &

FIGURE 2.

Lemma 4.2. Suppose the wave speeds A\¢(V') satisfy (A;) and
(A3) (1 + \/§) (dm + dk) < d(Ak, Am) = ka
for V € . Then there erist constants oy, > 0 depending on dy, dy, Dim but independent of €,

V such that

E ——m-
(425) |e_%g’° e'}gk(() (C) dCl < Dk € Pm + O(C ) _Lm. Ok, M # k
Om
c € = ckl ok, m = k.

Proof. When m = k, (4.25) follows from a direct calculation. So suppose that m # k. Using the
notation Ax = Ag(V(€)) and (4.3) we obtain the chain of identities

3 lf( e d £ lf( e d e—'}f: 8—-/\;,, ds
e—'}yk/ €%yk(C)90m(C)dC=e_‘ Pk, k 3/ e Jox S— Ak as ; dg
Ck ck me
1 f¢ srnd
(4.26) _ F N s ge%f s— Ay do —-f(a e g
Inne e

€1, -
=<pm/ e‘fe An=deds
c

k

In view of (A4;), we have

£ ¢ €
/ e%j; Am—)\kdsdc‘s’i 1f Am—Ar ds ll)&/\ i‘k)ldc‘
miy Nk

13 ¢ ¢
e [ et *“‘*"“’d(lf Am—,\kds)
. €Je

18 % _ads
S—-———Dg (1+e Fl '\"d)
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(4.27) =




Combining (4.26) with (4.27) and using (4.3), we arrive at the estimate

-1 ¢ . d
¢ e efp,.." m s _lf‘ Am=Axds 1 [ xn -2 ds
Pm + e ‘e e o

Ime

)

mk

3
le-“}yk/ e%gk(Pde| <
cx

-1 [Pk s 2. d .
(4.28) 3 e e T3 sexds L[ An-dids
=—\|pm+ e Pk e Pk
Dmk Ims
€ e 1 -3 sandstd [ an-Aids
= + ¢ Jom Pk Tie ok -
Dmk(pm Dmk Ime ( ) ¥

The goal is to show that under (A3) the term in parentheses decays as ¢ — 0. To this end,

observe that

Pr 1 9
(4.29) -/ s= Amds < = Din
p

m

Ck
(4.30) / A = A ds < di (Diom + di + dm)
p

k

It suffices to show
1
(4.31) — Oy 1= "'EDIZcm + (dx + dn) D + (di + d)? < 0

Since the roots of the quadratic —%zz + z + 1 are 1 4 /3, hypothesis (A3) implies the inequality

(4.31) and thus there exists a positive constant akm, such that

1 [P, 1feky _
o [0 oA ds+‘fpk Am=Ag ds

(4.32) <O(e ™).

The proof of the lemma follows from (4.28), (4.32) and (4.6). g

Our next objective is to use the facts that each ¢y is essentially supported on the interval

[Ak—, Ak+] and that such intervals are distinct in order to estimate the integrals

3
(4.33) Fimn(€) = e t9:(®) / et 90 em(C) pa(C) dC.

We begin with:

Lemma 4.3. Suppose that A\(V), k =1, ..., N, satisfy (A2) and (A3). Then
(i) form=1,..,N,

£
(4.34) |e= o / et%* o i d| < or,
ck
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(ii) for m,n =1, ..., N, with m# n, m # k and n £k,

£
Ie"%gk/ et gk Pm Pn dCI < € 3m(€) on + £ 5n(¢) Om
(435) Ck Dy, Dim g
—okn  dydy ~ by k m
+ [sm() O(e T 4 () O ]‘Pk
Proof. First we show (i). Since
1 f 1 e_%gk £
(4.36) Fimi = e™39 / oo T it = o / omdC
Ck ke Ck
it follows | Fx,mx| < ¢k and (4.34) is proved. Observe next that because of (42)
(4.37) Om Pn < 8m(€) @n + 8n(€) Om form#n, E€R.
Using (4.25) with m # k and n # k, we obtain
1 ¢ 1 1 ¢ 1
|Flymn| < sm(e) o™+ / et o d¢ | + sn(e) e / €% o d( |
(4.38) o ( ) o
< SB—@ (€ 0n + O(e™ ™) didy 1) + 22 (e Om +0(e™ ™" ) dxdm @1 ,
kn

which in turn yields (4.35). g

It remains to estimate the integrals F ., with m # k, that account for the effect of self-

interactions. Using (4.3), we write Fi pm in the form

3
Fk,mm = e-‘}yk/ lyk ‘P dc
Ck

¢
— —lf( 8~ ds ¢ lf(s Ards e sz‘ = Am ds
= T

Ck

—Zf‘ 5=Am ds

c € 3 (¢, 2 ¢,

= Mz / e‘ff hds B A"‘d’dc
ImE Ck

I I
-2 s—Agm ds
[y,
Ck

d¢
(4.39)

il
)
3

where we have set
(4.40) Akm(U) = 22m(U) = A(U) = Am(0) + (Am(U) = Me(D)) -

Note that the ordering goes At(U) < An(U) < Agm(U) when k < m and Agm(U) < An(U) <

M(U) when k > m. In order to estimate Fi mm, it is necessary to study the ranges of the wave
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speeds Ax(V) and A, (V) relative to the range of the composite speed Agm(V), for V € Q, and
to impose conditions that guarantee non-resonance between the wave speeds and the composite

speed. Note that Ak, (V) is bounded by
(4'41) Akm— S Akm(V(E)) S Akm+

where the constants Agp,—, Agm4 and dinm, the length of the range of Akm(V); depend only on p.
We introduce the notation

d(€, Akm) = distance between the point £ and the interval [Agm—, Axm+],

d(Am, Akm) = distance between the intervals [Am—, Am+], [Akm—s Akmt)s

and impose the strengthened version of Hypothesis (Aj3)
(Ad4) T(dm +di) = T[(Amt — Am-) + Akt — A=)] < d(Ak; Am) = Digm -

It is easy to calculate diy = Agmy — Akm— = 2dp + di, d(Ammy Akm) = Dim — dpn, and to note
that the ranges of Ak(V), A(V) and Ak, (V) are separated for V € Q2 (see Figure 3).

Ak(V) Am(V) Akm(V) = An(V) + (An(V) = A(V))
<€ > ¢ ) € )
pAk—  Apgbi G Am— Amybm akm Akm-— Agmy bem
FIGURE 3.

The ranges of Ax(V), An(V) and Agpm(V) for m > k.

Since the lengths di are of order O(x) while the distances Dy, are of order O(1) as p — 0,
hypotheses (A3) and (A4) are not particularly restrictive for solutions of small oscillation. (A3 —A4)
are imposed for all k,m = 1, ..., N, and points axm, bxm are selected (near the support of Ag,(V))

so that, upon rearranging a,,, b, if necessary,

(4.42a) ap < Mg S Apg <bp <@ < Appe < Ay < by < @i < Ak < Akmg < bk
when k < m, and

(4.42b) km < Akm— S Apmt < bgm < @m < A S Amg < b < agp < Ao < Mg < bge,

when k > m. Such choices are clearly possible. The points ay, by are now fixed, while the points

@kms bkm Will be selected subject to (4.41) in the course of proving:
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Lemma 4.4. Suppose that A\ (V), A (V) satisfy (A2 — As). There exist choices of agm, bem and

constants aim, Bkm > 0, depending on di, dy, Dim but not on €, such that

(a) if k < m, then

1 2 d3, dx 1,-2%%km
d(akvakm)ELPm+di}\k,AkmiO(ee ¢ )‘pk, gsakma

£
(4.43a) le'%g"/ et o2 d( 5{
ck " | dim dmO(% e—ﬂim‘)@m : €2 agm,

(b) if k> m, then

dkm dmo(% e_&‘m-)()om £ S bkma

3
-1 1 )
(4.43b) e t-‘"‘/ ee% 2 d(| S{ &2 4 2appn
o " dibkml,Akmis‘Pgn'*‘ d()\k,A:—m)O(%e < )k, €2 bkm,

Proof. Let k < m and proceed to prove (a). The ranges of Ax(V), Am(V) and Agm(V) for
V € Q are as in Figure 3, and ay, is any point compatible with (4.42). Let pxm be a point
where the function f(f s — Agm(V(8))ds achieves its global minimum. Then Ak (V(pkm)) = Prm.,
Akm— < Pkm < Agm4 and

(4.44) Gim(6) = /E s — Akm(V(s))ds >0, for{eclR.

Pkm

Consider first the region £ < @gm < Agm—. In this region Fi mp in (4.39) is decomposed into

the integrals

¢ 3 ¢ ¢ L
(445)  Fomm = @2, ¢+ Joem *00m & ( / I e / S shamas d{)
—oo -

The first integral is dominant when £ > c; and the second is dominant when £ < ck. Since

¢ < € < agm < Agm—, the first integral is estimated by

€ _1f¢ ,_ R £ _1[¢ - s —
/ e %fpkm Atm d dCS/ e %f"km Akm d (————Akm C)dc

-00 —00 Akm - E
1 fe¢
5 el f S—Akm ds (
(4.46) <5/ ¢ d(—l/ s—A ds)
- —o00 d(faAkm) 13 Pkm k
B € -1 f:k s=Axm ds
= Wtk Aim)

In a similar fashion the second integral is estimated by

e _1 (¢ s—Airm ds £ ~1 [% s_p ds
/ e ‘fpkm U< ————e ‘f"km .

(4.47) ~o0 ~ d(ck Akm)
£ —% fc" S—Agrm ds
<—° i m
d(Ak, Akm)
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Let D1 = d(@km,Akm), D2 = d(Ak, Ak ) and combine (4.45), (4.46), (4.47), and (4.3) to obtain

€ € [ s—Aimds
|Fk,mm| < (P?n ('13’1' + D—26 fc" )
_gf‘ $=Am ds
(4.48) — _E_(P2 + i e “Jom
D, ™™ D, I,
€ € 1 , -2 scrndstd ["¥ s—Apm ds
—m + D, I2 (e I L )
me

1ok 11¢
e‘f% s Akmdse‘fpks Arm ds

Ie ok

D,

It suffices to show that the term in parentheses decays as ¢ — 0. Using the estimations

Pk
—2/ §—Amds < D%,
P

m

(4.49) "
/ 8 = Akm ds < (Agmy — Me=)dk < 2[Digm + (d + di)](din + di)

Ck

together with the fact that (A3) implies that (4.31) is satisfied, we conclude that

2 [Pk 1 [Pk g
o fpms Am ds+1 ka s=Agm ds

(4.50) < O(e~ ™).

In conjunction with (4.48) and (4.6), (4.50) shows (4.43) for £ < agm, k < m.
Consider now the region £ > apn,. An argument similar to the one leading to (4.20) shows

that
E -1 ¢ S~ 3 % 1 ¢ s$— m GS

(4.51) |/ oo 2 hem d d(|§/ R N T .4
Ck —-00

Therefore, (4.39) and (4.40) give

8—Arm ds

1 [
|Fimom] < O(1) dim 2 ¢ Jor

e_%f:m’"k"‘d’ lf‘ s=An, ds -lf‘ Am—Ag ds
(4.52) = O i T Lt
me

d,, -1 [f*m 4 O O W
SO(I)dkm(Pm (?me ‘me ? AMdse ‘f"km k 3)

The goal is to choose ag, so that the term in parentheses decays as € — 0, for any £ > ay,,. Since
Pkm & [Am—, Am4), the first term decays as ¢ — 0 and its decay rate can be estimated by noting

that

Pkm A
-/ s—)\mdsg—/ $— Any ds
(4.53) - Amt

1 1
= "'2'(Akm— - ’\m+)2 = _§(ka - dm)2 .
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Since Am(U) > Ax(U), the second term decays for £ > prm but grows for £ < pim. The fastest

growth occurs for £ = ay,, and the growth rate is estimated by

Qkm
[ A = M < (ot = ) (P = )
P

km

(4.54)
< (Dim + dim + dic) (d(@km, Aem) + 2dm + dic) -

It suffices to give conditions on di, dy, Dim and to choose a,, so that

(4.55)  —Bim i= —%(ka —dn)? + (Dim + dm + d) (d(@ms Akm) + 2 + di) < 0.
For example, if we choose @k, = Agm— — di and we require that

(4.56) 4(Dim + dm + di) (dm + di) < [Diem — (dm + di)]*,

then (4.55) is satisfied. By solving the inequality y? — 6zy — 3z® > 0, we see that (A4) implies
(4.56). Therefore (4.52) yields the estimate

1
(4.57) |Fimm| < dim dmO(< e ™Y o

for £ > @gm, k < m, and completes the proof of part (a). The proof of part (b) is similar. g

Lemmas 4.3 and 4.4 provide estimates on the integrals Fj mn, Which calculate the effect of
diffusion induced wave interactions. The estimates are consequences of the separation hypotheses
(Az — A4) on the wave speeds. Obviously (A4) is the strongest hypothesis and implies the rest. In
the sequel we make use of the following implication of (4.34), (4.35), (4.43) and (4.7).

Corollary 4.5. Suppose that A (V) satisfy (A4), for k,m,n =1, ..., N. Thereis g0 > 0 and a
constant C, depending on di, Dim, Din but not on €, such that
1 ¢y ad
(4.58) | Fin] = |e™2o" / 9 o pnd(| <C Y ;
P i=1
fork,m,n=1,...,N and 0 < ¢ < ¢.

Remark. It is instructive to identify which of the integrals Fi ., have nonzero contributions in
the limit ¢ — 0. In view of (4.36) and (4.3), the terms F i and Fi km Fi kx have nonzero limiting
contributions supported on the k-th wave speed. On the other hand, (4.35) and (4.7) imply that
Fimn — 0as e — 0 when m # n, m # k and n # k, what suggests that diffusion induced
interactions of two distinct families have no contribution as ¢ — 0 on a third family. (Recall that
we are dealing with Riemann data solutions). By contrast, (4.43) suggests that the terms Fimm,
m # k, accounting for the effect of self-interactions on another family, have a nonzero contribution

in the ¢ — 0 limit which is supported on the m-th wave speed.
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5. Validation of the asymptotic expansion

The objective of this section is to solve the problem
0, + [€ — MV (€))] bx

N N
(5.1) = 3 3 [VAV(E) rm(V(E) - ta(V(E)] (T om + bm) (7 o + 0n)

m=1n=1
0k(ck) =0
where V € Q, defined in (4.1), and 7 = (71, ..., TN) is a vector-parameter in IRY. The aim is to
construct solutions 8y (-;7) that are of order O(|7|?) in the wave strength |7 = |r| 4 ... + |7n] as
|7] = 0. This would validate the asymptotic expansion (3.29).

Throughout the section we use the notation

A = A(V(E)),

(5.2)
ﬂk,mn = ﬁk,mn(v(f)) = V’\k(v(f)) Tm(V(E)) . 'I”n(V(f))

and assume that p is small so that the hypotheses (A; — A4) on the wave speeds are fulfilled for
V € Q. Moreover,

(5'3) Iﬂk,mnl S B

with B depending only on u. Recall that gi is defined in (4.4) and that ¢ is the middle point of
the interval [Ax_, Ak4]. Using the variation of parameters formula, (5.1) is expressed as a system

of integral equations

£ N
(54)  O(&) =€ / 2% " Bma(V(C) (Tm #m(C) + 0m(Q)) (T 0n(€) + 8a(()) ¢ -

Ck m,n=1

Our strategy is to formulate (5.4) as a fixed point problem, and to use the uniform contraction
principle in order to construct solutions 0x(-;7),k =1, ..., N.

Let Cp(IR) stand for the continuous functions that decay to zero as |{| — oo and define

_ _ N. o Ix; () 00 :
(5.5) E = {X =(x1, -5 XN) € [Co(R)]" : EGI% Zfil oi® <o, j=1,..,N } .

E with the weighted sup-norm

N
Ix; (6]
5.6 L RSN 00
(56) =2 e S¥° @
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with weight Efil @; > 0 is a Banach space. Let Bs = {r ¢ R" : |7| < 6 } and set

.

N
(5.7) F={x€E: IxOI<AIP> @i§), £€R,j=1,..,N},

i=1
where 7 € Bs and A is a constant to be determined later. F is a closed bounded subset of E in
the weighted norm || - ||. Define the map T that takes V € Q, 7 € Bs, x € F to the vector-valued

function T'(x) with components

I3 N
(5.8) 100 = 7 ["e% 3 Brmn (7n o + ) (7 + Xa) 4G
ck

m,n=1
k=1, .., N. The map T has the properties :
Proposition 5.1. There ezist positive constants A and 8 such that for § < b :
(i) T:Q x Bs x F — F is well defined.

(ii) There ezists o, 0 < a < 1, such that

(5.9) 1TV, ) - TV, )| < ellx-xIl,  forx,x€F,

and for ﬁny V € Q, 7 € Bs. Therefore T(V,1,+): F — F is a uniform contraction.

(iii) There exists a positive constant C, depending on p but independent of 8, such that
(5.10) | T(V,m,x)-T(V,s,x)|| L Cb|t—s|, for 7, s € Bs,

and forany V € Q, x € F.

Proof. In the forthcoming estimates C, C' and C" stand for generic constants that can be
estimated in terms of B, the dimension of the system N, and the constant in the estimate (4.58).
As a result such constants ultimately depend on u in (4.1), but are independent of §. We proceed

to establish (i). Let V € Q, 7 € Bs and x € F be fixed. Then (5.8), (5.7) and (4.58) imply

£ N
ITk(x)] < e~ o / et 3" |Bemnl (I7m| @m + Ixm) (lrnl¢n+lxnl)d6l
Ck

m,n=1
. I3 . N N N
< Be i / e 3 (Itmlom+ AT Y i) (ITnl¢n+AITI2Zw)dC‘
Ci m,n=1 i=1 j=1

(5.11)

[

N £
<CIrf2(1+248+ 4%8%) Y |e—%9»/ e} o d(|
k

m,n=1

N
<CO+ A7 I Y ;.

i=1
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Comparing the outcome with (5.7) we see that if
(5.12) C(1+ A6 <A,

then T'(V,1,x) € F and (i) is established.
Next, we examine (ii). Let V € Q, 7 € B;s be fixed, and consider x, ¥ € F. Then

Lo, X _
1 THOO-TR = [ et 3 Brnlrin o (xn = %)+ 70 (m = %)
. Ck

m,n=1

+ (XmXn = men)] d¢

Using (5.6), (5.7), (5.11) and (4.58) we obtain

£ N
|Tk(X) - Tk(i)l < e—%g“ / 6%9“ E Iﬂk,mnl [le' Pm IXn - an + ITnl Pn |Xm - >~(m|

Ck m,n=1
4 Dol X = %ol + 1Kol 1on = Zo] dc1
- 1
<Be / S Ll omlx -1 30
m,n=1 =1

(5.14) N
L2 Al (e -3l Sl dc‘
j=1 =1

< C' (6 + AS?) ( Z Ca ‘}9*/ %oy, ‘PndCI)”X x|l

N
<C'6(+ A Qe lx -l

=1

which, on account of (5.6), in turn implies

(5.15) IT() - TGNl < €81+ A8) x - .
Therefore T' will be a uniform contraction on F, provided that
(5.16) C'6(1+A8)=ta<1.

Note that (5.12) and (5.16) can be simultaneously satisfied for many choices of A and é. In
the sequel, we fix A = 4C and § < § = min{zla,-,‘,—lc—q}. For these choices, 1 + Aé < 2, both (5.12)
and (5.16) are fulfilled, and the proof of (i) and (ii) is completed.
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Last, we turn to (iii). Let V € , x € F be fixed and consider 7, s € Bs. Then (5.8) yields
(upon suppressing the x and V dependence)

£ N
Tk(T) — Tk(s) = e—‘}gk / e%y" Z ﬁk,mn [(Tm'rn - Smsn) Pm Pn
(5.17) o oty

+(Tm_sm)Soan'*'(Tn"sn)‘PnXm] dC

Using (5.6), (5.7), (4.58) and (5.16) we deduce

I3 N
|Ti(7) — Ti(s)| < PL / et Z Bk, mnl ([le — $m||Tal + |70 — 8n] |3m|] Pm Pn
ck

m,n=1

+ |Tm — Sm| Pm Ixn| + |70 — Sn] ¥n IXmI) dcl

< Be %

N
Z (6 [le - sml + lTn "Snl] Pm Pn

m,n=1

£
/ et 9k
c

(5.18) .
+ A6 (Z‘Pj)[l'rm — 8m|@m + |Tn — 8nl Q"n]) dC‘

i=1

N 3
<C"6(1+ Ad)|T — 4 z |e”%~"*/ €% Py d(|

m,n=1 Ck

N
<C"8|lr—s| Y 9

j=1

and, by virtue of (5.6),
(5.19) |T(r) = T(s)|| < C" 6| — s

which completes the proof of (iii). g

The properties of the map T are useful for both solving problem (5.1) and for establishing

properties of the constructed solution 8 = (6, ..., On).

Corollary 5.2. Let A and § be as in Proposition 5.1. Given V € Q, T € Bs, there ezists a unique
solution 0(-;7) of (5.1) in the class of functions satisfying

N

(5.20) 10k(-;7)| < Al E(pj , r|<é6, k=1,...,N.
i=1

Moreover, there ezists a constant C independent of & such that 6(-; ) satisfies

N
(5.21) [0k(-57) = O(-38)| < Cé|T— 4 Zcpj , for 7,8 € Bs.

i=1
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Proof. For each fixed V € Q, 7 € Bs, the map T(V,1,-): F — F is a contraction with a uniform
contraction constant a < 1. The first part of the lemma is a direct consequence of the contraction
mapping theorem.

The fixed point @ depends parametrically in V and 7. In the second part we are interested
in regularity properties of 8 in 7 and need estimates that are uniform for V € Q, 7 € Bs. Instead
of using general versions of the implicit function theorem, we opt for a direct approach that
gives precise information on the bounds. Let V € Q be fixed and consider 7, s € Bs and the

corresponding fixed points () and 6(s) of T'. Then we have
(5.22) 8(r) - 6(s) = [T(r, 6(r)) = T(r, 6(s))] + [T'(7, 6(s)) — T(s, ()] -

Using (ii) and (iii) in Proposition 5.1, we obtain

16(r) = 8(s)l| < IT(r, 6(7)) = T(r, 6(s)l + (IT(7, 6(s)) = T(s, 6(s))

(5.23)
<allé(r) - 0(s)|| + Cé|r - sl.
Hence,
C
(5.24) l6(r) - 8(s)ll < T=— 81 o]

and (5.21) follows from (5.6). g

37




6. The map connecting the wave strengths to the Riemann data

For V € Q the states V(£) take values in the ball B,(U_-) = {U € RN : |U-U_| < p}.
Because of the orthogonality relations (3.8) and the continuity properties of l;(U), ri(U), given
n > 0 we can choose p such that
(6 1) l,'(Ul) . ’I‘,'(Uz) >1-19, U,,U; € Bp(U_.) 5

Ilt(Ul)rJ(U2)| ..<_?7’ UI, U2 € Bu(U—)a 2#]
Also for states in B,(U-) the right and left eigenvectors are bounded
(6.2) *(U)| < R, |li(U)|<R, UeB,(U-), i=1,..,N,

by a constant R depending only on p. For our future deliberations we place an additional hypoth-

esis, which complements (A4; — A4) and concerns the behavior of the right and left eigenvectors

along functions in Q: Namely, we fix < 1/N and require that
L(U-)-r(V(§) 21—,
(45) .
[LU-)-ri(VEN <y 17

for V €  and € € IR. This is attained by restricting, if necessary, the size of u.

Consider the system of differential equations

N N
(63)  eap+ [E-M(V(ENa=¢ ) Y [VAV(E) rm(V(E) ra(V(E))] am an,

m=1n=1
where V € . We saw in the previous section that (6.3) has solutions given by an asymptotic

expansion in a parameter 7 € IRY of the form
(6.4) ap(€;7) = Tk r(€) + 0k(€5 7).

The expansion is valid for || < § uniformly for V € Q, and 6i(-; 7) satisfies (5.20) and is of order

O(|7|?) as |r| — 0. The parameter 7 is associated with the data at ck, as from (5.1)

(6.5) ak(ek; 7) = Treipk(ck) -

It is instructive to visualize |7| = |ry| 4 ... + [7n| as measuring the wave strength of the Riemann

problem solution associated to ax(€; 7) (c.f. (3.11)).
A comparison with the general outline in Section 3 shows that while the solvability of (3.15)

is at this point well understood, it remains to select 7 so that (3.13) is satisfied. The issue emerges
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of studying the connection between the parameter 7 and the boundary data Uy. To this end let

U_ be fixed and consider the map S that carries 7 into the end-state vector

N )
(6.6) S =U_+% / [k 0r(C) + 8(C; 7] m(V(C)) e -
k=1 Y™

For 7 € Bs = {r € RN : || < §} the map § is well defined, and depends explicitly on V and
implicitly on €. Qur objective is to study the invertibility of S and to show that the inverse map

is uniformly bounded in V and «.

Proposition 6.1. Assume that (A; — As) are satisfied for V € Q. There exist positive constants
r and § such that :

(i) Given Uy € B,(U-) there ezists a unique solution of the equation S(t) = U} with 7 € Bs.

(ii) For each V € Q, ¢ > 0 the inverse map S~' : B, (U_) — Bs is well defined and satisfies
(6.7) 151U < 2600, — V-,

where 3 is a constant which depends on u, but is independent of the particular V € Q and «¢.

Proof of Proposition 6.1. Let U_ be fixed. The equation S(7) = U, has the form

N 00 N oo

(6.8) Up-U-=) = / eek(V(O)d(+ ) / 8x(¢; ) ri(V(€)) dC -
k=1 -0 k=1v 7%

If A(V) is the matrix whose k-th column is given by

(6.9) ar(V) = /oo erre(V(()) d¢, k=1,..,N,

then (6.8) reduces to

N oo
(6.10) Uy -U_=A(V)T+ ) / 0(C; 7) re(V(€)) d¢
k=1Y %>
and the issue becomes to study the solvability of (6.10) in 7.
First we show that Hypothesis (A45) implies that A(V) is invertible.
Lemma 6.2. Assume that (As) holds (with n < 1/N). The matriz A(V) is invertible for any
V € Q, and the inverse matriz A~1(V) is uniformly bounded
(6.11) AV <p, Ved,
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by a constant B independent of ¢.

Proof of Lemma 6.2. Since ¢ are averaging measures, the mean value theorem implies

(6.12) ()= [ " orere(V(Q) dC = r(V})

for some V;* € B,(U_). Since {r;(U_)} are linearly independent, by choosing p sufficiently small
it is guaranteed that the vectors ry(V;*), ..., rn(Vy%) are linearly independent and thus A(V) is

invertible.

We now show (6.11) and in the process provide an alternative way of showing that A(V)is

nonsingular. For 7, y € RN consider the equation A(V)r = y and write it in the form

N 0o
(6.13) Zrk / erre(V(()d{=y.
k=1 T
Taking the inner product of (6.13) with /;(U-) and rearranging the terms we obtain
©14) [ el Ve e = LU-) v = o JIRCCARNI TS
e k#i -
Then (As), (4.3) and (6.14) yield
(6.15) Il (1= ) < [L(U-) -yl + ) Imel

k#i
Adding the resulting equations for 7 = 1, ..., N and using the fact that 7 < 1/N, we obtain the

estimate
N
(6.16) 7% = S I(0-) o < Blol = PIAW) 71

The first implication of (6.16) is that the only possible solution of A(V)7 = 0 is the trivial
solution 7 = 0. Therefore a;(V), ...,an(V) are linearly independent and A(V') is invertible. In

addition, (6.16) implies that
(6.17) AT (V)yl < Blyl,  yeRY,

which proves (6.11). g

Next, we formulate solving the equation S(7) = U, as a fixed point problem. Let B.(U-)
be the ball centered at U_ of radius r and consider the map P that takes Uy € B.(U-), V € Q,

T € Bs into the vector
N (oo

(6.18) P(U4,V,7) = AN (V) (Uy - U_) = ATN (V)Y / 0x(¢; ) re(V(C)) dC.
k=1Y~%
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Since A(V') is invertible, solutions of (6.10) are equivalent to fixed points of the map P(U,,V,-).

Lemma 6.3. There ezist positive constants § and r such that P : B.(U.) x Q x Bs — By and has
the property : There ezists a constant a with 0 < a < 1 such that

(6.19) |P(Uy,V,7)— P(Uy,V,9)| < a|r — 5|, T,8 € Bs,

for any Uy € B,(U-), V € Q; that is P(Uy,V,-) is a uniform contraction on Bs.

Proof of Lemma 6.3. Let U; € B.(U.),V € Q and 7 € Bs. Using (6.18), (6.11), (6.2) and
(5.20), we obtain

N 00
|P(Uy, V,7)| < |[AY(V)] <|U+ —U_|+ ), / 6x(¢; D) re(V(O)] dc)
k=1Y "X

N oo
gﬂQ+RAhPN§:/ wﬂO
=177

<B(r+RAN?§?)

(6.20)

The first part of the lemma is true, provided that r and é satisfy
(6.21) Br+BRAN?§ <.

Let now 7, s € Bg and observe that

N
(6.22) P(U4,V,m) = P(Uy,V,s)= —A (V) ) / o [6k(¢5 ) = 0k(G 8)] TR(V(Q)) dC.
k=1Y —%

On account of (6.11), (6.2) and (5.21), (6.22) gives

N oo
IP(U, V,r) = PO, Vo) <8 [ 1046 7) - 0u(G; o) (VO] de
k=1Y "%

6.23 N .o
(629 SﬂRNca|r—s|Z/ ;¢
j=177%°

<BRNCS|T—4|.

Therefore, if
(6.24) a=BRN*C6<1

then P(U,,V,-): Bs — Bs is a uniform contraction.
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Note that if § < 2 min{(BRN?C)~!, (BRN?A)™'} and r < %6 then both (6.21) and (6.24)

~ are simultaneously satisfied, and the proof of the lemma is complete. g

We return to the proof of Proposition 6.1. Lemma 6.3 implies that given Uy € B,(U-) there
exists a unique fixed point of P(Uy,V,-) in the ball Bs and thus a unique solution of §(r) = Uy.
Hence, S~ is well defined. Let Uy and 7 = S~'(U;) be two corresponding points connected

through (6.10). Using (5.20), (6.2) and (4.3), we obtain

N .o
AV <105 = U1+ 3 [ 106 V) ¢
k=1Y—°

(6.25) N oo
<0y~ U+ RANKPY. [ gidc
=17

=|U; —U_|+ RAN? |7

Using Lemma 6.2, in conjunction with (6.21) and the choice of §, we deduce from (6.25)
1
(6.26) Il < 81Uy ~ U_| + BRAN? 61| < 81Uy = U-| + 5l

which implies (6.7) and completes the proof of the proposition. g
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7. Proof of Theorem 3.1

This is the concluding section of the derivation of a-priori estimates for (P,). The analysis of
Sections 3 to 6 is combined in order to prove the main theorem.

Let U_ be fixed and define by (4.1). Q is a convex, bounded subset of the Banach space
C®(—00,00) of continuous, bounded functions. Fix € > 0 and consider the map T carrying V € Q

to the continuous function W defined by the procedure :

(a) Let ¢y be as in (4.3). We obtain the solution 8;(-;7) of (5.1), for 7 € IRN small, and define

ar(+;7) = Tk + (- ;7). The resulting ax form a solution of the system of equations (6.3).

(b) Let S be the map defined in (6.6). Let ¢ be the solution of the equation S(7) = Uy, that is
t=S _1(U+).
(c) W is then defined by setting
¢ N
(1.1) WO =0+ [ Y [n(0)+ 0G0 me(V(O) &
—0 k=1
Concerning the feasibility of the constructions we remark : The parameter g in the definition
of Q is fixed so that Hypotheses (A; — As) are satisfied for V € Q. We also fix the parameters A
and ¢ as in Proposition 5.1 and let § < §y. Then Corollary 5.2 states that for 7 € Bs the problem
(5.1) has a unique solution satisfying the estimate
N
(7.2) 6k(-3T) < Al Y @i,  TEBs.
j=1
According to Proposition 6.1, for r and § sufficiently small the map S : Bs — B,(U_) is invertible,
S(r) = Uy is uniquely solvable in Bs, and the inverse ¢ = S~1(U, ) satisfies for some fixed §

(independent of V' and ¢) the estimate
(7.3) [t = [S~'(Us)| < 28|04 - U-|, U4 € Bo(U-).

As a result W(—o0) = U_ and W(+o0) = §(¢) = U;.. From (7.1) we obtain
W &
(74) —CE- = Z [tkSDk + Bk( ;t)] Tk (V())
k

=1
which, in conjunction with (7.2) and (6.2), yields

dw a -

F{l <SR [Itel et Al 3 5] [re(V)]
(7.5) = N a
<SRIEQA+AN]) D o;.

i=1
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In turn, (7.1), (7.3) and (7.5) imply

£ N
WO -v-1<| [ 13 o0+ 06 0) V@) ¢
—00 k=1

<2BNR(1+2BAN|Uy - U_|)|Uy = U-|.

(7.6)

It follows that, if U; € B,(U-) and r is restricted by

(1.7) 98NRr(1+2BANT) < 1,
the function W defined in steps (a - c) satisfies

(7.8) W) -U-|<p, ¢(€R.

In the sequel we fix r and & to simultaneously satisfy (7.7), (6.21), (6.24) and (5.16). All the

stated constructions and estimations are then feasible, and the map T : Q — Q is well defined. In
addition, (7.5), (7.3) and Lemma 4.1 dictate there is a constant C such that
S R N

W) -U_| <UL -U_|= | e =lM=-Dd¢,  for &< -,

€ Joo

(7.9)

C [ - drnay?

WO - Ua| <10~ U-| T [ e R ag, for e Awy.

3

Our next task is to apply the Schauder fixed point theorem to the map T
(i) T(Q) is precompact in C°(—00,00).

Consider a sequence {V"} C Q and let W™ = T(V"). Estimates (7.5), (7.3), (7.8) and (4.7)
imply that {W"} is uniformly bounded and uniformly equicontinuous on the reals. It follows from
the Ascoli-Arzela theorem and a diagonal argument that there is a subsequence {W"i} and a
continuous function W such that W™ — W uniformly on compact subsets of IR. But then the
decay estimates (7.9) imply that the convergence is in fact uniform, and thus T(£) is precompact

in C%(~00,0).

(i) T : @ — Q is continuous.

Let {V"} C Q be a convergent sequence in C°(—00,00), with V" — V9, and set W* = T(V™"),
WO = T(V°). We proceed to show T(V") — T(V?). Recall that ¢ is held fixed, and that W™
and WO are defined in terms of the intermediate quantities ¢, 07(-;7), af(-;7), §™, t" and ©9,
6%(-;7) al(-;7), §% ¢° in steps (a - ¢) for V.= V™ and V = VO, respectively.

First, we show 7 — ¢ in C%(=00, 00). One first uses (4.7), (4.2) and (4.8) to show that {¢}}

is a uniformly bounded and equicontinuous sequence of functions that satisfies the decay estimates
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(4.8) as |¢] — oo. An argument as in (i) implies there exists a subsequence {¢;’} and a function

¢ such that ¢’ — 2 uniformly in IR. Passing to the limit in (4.3) along the subsequence n;

1 1
oo -1f‘ 8= (V™ (s)) ds - o -1 f‘ s=Ax(VO(s)) ds
oo e “ e ¢ [ e ‘e d¢

(7.10) o = =9,
we deduce p° = ¢f. The sequence {¢}} has limit points, and any limit point is equal to ¢f.
Hence, the whole sequence {p}} converges to ¢9.

Second, we show that for 7 fixed 67(-;7) — 6%(-;7) in Co(—oo oo) This follows by a similar
in spirit argument that we only sketch: Using (5.20), (5.1), (4.7) and (4.8), we show that {67}
possesses a subsequence {6}’ } and a limit point 6° so that 6’ — 63° uniformly in IR. Passing to

the limit in (5.4) along the subsequence n; and using the convergence of V" and ¢}, we obtain

o 3
(7.11) 62(¢) = e~dob / S Bmn(V0) (1 %(0) + 02(0) (ra e210) + 6°(0) dc

Ck m,n=1

Since the limiting #3° inherits the estimate (5.20), the uniqueness part of Corollary 5.2 implies any
limit point of {3} is of the form 63°(-;7) = 6%(-; 7). Consequently 92(-;7) — 69(-;7).

The third step is to show that t* — ° in IR". Let $™ and S° be the maps associated with V"
and V° respectively and define t" and ¢° satisfying S™(¢*) = §°(¢°) = U,. Since {t"} is bounded,
there is a subsequence {t"/} and a vector t*° such that t" — t*. We use (5.20), (5.21) to pass to
the limit in §™ (") = U4 and to obtain S%(¢®) = U;. Because of the unique invertibility of the
map S§° it is t® = ¢t and thus the sequence {t"} converges to t°.

The precompactness of T implies the sequence {W"} has a subsequence {W"} and a limit
function W such that W™ — W in C%(—o00,00). Using the established convergences and

(5.21), we pass to the limit in (7.1) along n; and obtain

@12 WO =U+ [ 5 HAO + RGOITIQ) e = T,

® k=1

Therefore any limit point of {W"} is equal to T(V°) and thus T(V") — T(V?) in C°(—o0, ).
Hence, T is continuous.
The Schauder fixed point theorem implies there exists a fixed point U, of the map T in €. By

construction U, satisfies

N
(7.13) U(6)=U_ + / > ake(G7e) e (U:(C)) de,

® k=1
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where
(7.14) ake(&; Te) = Thye Pre(€) + Oke (&5 7e)

solves (3.15). The functions @k, Ok and ax. depend implicitly on ¢, and the quantities 7, satisfy

N o
(7.15) S = U=+ Y [ a6t r(UO) d = U
k=1 YV~
As a result U (+o0) = Uy and
N
(7.16) Ue(él) = ; ake(f; Ts)rk(Ue(f)) 3

ake(&; 7e) = L(Ue(8)) - Ué(@ .

Using (7.16) and (3.5 — 3.8), we can rewrite (3.15) in the form
(7.17) (Ue) - [ - €+ VF(U.)|U; = 1x(Ue) - U/

which implies that U, is a solution of (P;).

Consider a family {U.}eso of such solutions to (P.). By construction U, are of uniformly
bounded (and small) oscillation (C,) and satisfy the representation formula (3.33). Relations (7.2)
and (7.3) imply there exist constants C independent of ¢ so that |re] < C|Uy - U—|,

N
lake(&; )| < |7kelore + Clrel® S @je
(7.18) =

N
< C|U+ - U—I(‘Pke + U4 - U-| Z(Pje)

i=1

and as a result
N
(7.19) UHOIS K ) wse
=1

with K a constant of order O(|Uy — U_|) and independent of €. As {y;.} are uniformly bounded
in L'(IR), it follows that {U!} are uniformly bounded in L'(IR) and {U.} is of uniformly bounded
variation. The total variation of the family is controlled by |Uy — U_| and is thus small. The proof

of Theorem 3.1 is complete.
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8. Solution of the Riemann problem

Our next objective is to construct solutions of the Riemann problem (P) by taking ¢ — 0
limits of solutions of (P,) and to identify the structure of the emerging solutions. The analysis is
patterned within the framework developed in the previous sections. Nevertheless, it is instructive
to single out the set of hypotheses used in performing the ¢ — 0 limit and to provide an independent
presentation. Let {U.}.>o be a family of solutions to (P.) that connect U_ to U; and enjoy the

properties :

U, satisfy the uniform bounds (C,), (S) fore >0,
(A,) Ai(U;) satisfy the uniform bounds (3.9), (3.10) fore >0,

Ul satisfies (7.19) where ¢, is given by (3.25) .
Solutions satisfying (A;) were constructed in Theorem 3.1, and the resulting families are of small
oscillation and variation. The results of this section remain valid for families of large oscillation
and variation, provided the global separation of the eigenvalues and, most important, estimate

(7.19) hold. Helly’s selection principle implies there exists a subsequence of the original family,

denoted again by {U.} with ¢ — 0, and a function U of bounded variation such that
(8.1) Uc(€) — U(€)  pointwise on (—o00,00) .

Since U is of bounded variation its domain can be decomposed into two disjoint subsets C and S :
C consists of the points of continuity of U and S of the points of jump discontinuity. S is at most
countable, and the right and left limits of U exist at any £ € S and are denoted U({+).

We proceed to show U satisfies (P). In the sequel C denotes a generic constant that can be

estimated in terms of the bounds in (A,) and the Riemann data and which is independent of «.

Theorem 8.1. Suppose that (1.1) is strictly hyperbolic and let {U,)}.>0 be a family of solutions of
(Pe) corresponding to data Uy and satisfying (As). There ezists a subsequence {U,_} with e, — 0

and a function of bounded variation U such that U., — U pointwise on the reals. U satisfies
(8.2) —¢U' + FUY =0
in the sense of measures, the Rankine-Hugoniot conditions hold at any point £ € S

(8.3) —€[U(E+) - U=+ [FU(E+) - F(U(€-)] =0,
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and there ezxist constant vectors Uy, ..., Un € RN with Uy = U—, Un = Uy such that
Up=U- -0 <E€< Ao,
(84) U(f) = Uk /\k+ < { < )‘(k-{-l)— y k= 1, veey (N - 1) 9

Un=U4 ANt < €< 4.

Proof. Let {U.} be a convergent subsequence as in (8.1), satisfying the uniform bounds (Co), (8),
and 9 € [CP(IR)]V be a test function with compact support. Then (P.) gives

(8.5) R CART ST [ ve-wrae.
R R
Passing to the limit ¢ — 0 we deduce

(8.6) [ v-e)' - Fw)-v'de =0

that U satisfies (8.2) in the sense of distributions. Since U is of bounded variation, it also satisfies

(8.2) in the sense of measures.

Let £ = [A—, Ai4]U ... U[An_, Any] stand for the range of variation of the wave speeds

Ak(Ue). Then (4.8) and (7.19) imply

Pre < gexp{~2—lgd(€, A} ¢ € (—00,00) = [Ak—; Akt ],

(8.7) N c 1
U <KD pje < ?eXP{—ggd(ﬁ,C)z} £ € (~00,00) = L,

j=1
where d(€,A) and d(¢, L) are the distances between the point ¢ and the sets [Ax—, Apt] and £
respectively. Therefore the limiting function U stays constant on each connected component of
(—00,00) — £ and (8.4) follows. In addition U.(+o0) = Us implies Up = U— and Un = Uy.
The Rankine-Hugoniot conditions (8.3) are a consequence of the fact that U of bounded
variation solves (8.2). We outline a different proof, in the spirit of self-similar viscous limits.

Integrating the equation (P,) on an interval (a, b) we obtain the weak form
b
(8.8) [-bUe(b) + F(Ue(b))] - [~a Uc(a) + F(Ue(a))] + / U.(¢) d¢ = eUL(b) — eUs(a).

For £ € S and § > 0, we evaluate (8.8) between the points 6 and 7, with 7 < A;_, and integrate

the resulting equation in 8 over [£, £ + 6] to arrive at the identity

£+6 E+6 10
/ _8U.(6) + F(U.(8)) d8 + / / U.(¢)dcd8
(89) ¢ £ ers
= U!(6) d6 — e6U!(T) + 8[-7 Ue(r) + F(Uc(T))] -

3
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Using the consequence of (7.19) and (3.25)

(8.10) | sk,

- 00

in conjunction with (4,), (8.1) and (8.7), we take first ¢ — 0 in (8.9) and then divide the resulting
equation by é and take § — 04 to obtain

3
(8.11) _EU(E+) + FU(EH)) + / U(Q)d( = —T U(r) + F(U(r)) -

In a similar manner, given any 6 and 7 < A;_, we establish
6
(8.12) ~8U(6-)+ FU(-) + [ U(QdC = = U(r) + FU().
Then (8.3) follows from (8.11) and (8.12) for { = 6. g
With U(&) as above, define
(8.13) V(e,) =UZ),  (a,1) € (~00,00) x (0,00)

Clearly lim;_,o V(2,t) = U_ for < 0, Uy for z > 0. Furthermore, a solution V of the form (8.13)
is a weak solution of (1.1) on (—o0,00) X (0,00) if and only if U is a weak solution of (8.2) on
(—00,00). The equivalence follows from an argument due to Dafermos [D3]. Let x(z,t) be a C*

IRN-valued function with compact support in (—00,00) x (0,00) and define

(8.14) o= [ ennar.

The resulting function ¢ € [C°(—00,0)]". Conversely, any test function 1 may be represented
in the form (8.14) by choosing x = ¥(z/t)a(t), with a(t) € C(0,00) a fixed function such that
Js~ a(t) dt = 1. For solutions of the type (8.13) the weak form of (1.1) may be written as

/0°° [-00 V(z,t) - xi(z,t) + F(V(z,1)) - xz(z,t) dzdt
(8.15) = /_oo U()- (/0oo x:(&t, 1) tdt) + F(U(€)) - (/000 xz(€,t) tdt) dé
) /Z U©)- (- €9(0)" + FU(©) - v'(€) dt,

and the equivalence follows from the chain of identities. Theorem 8.1 in conjunction with Theorem

3.1 lead to an existence theorem for the Riemann problem.
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Theorem 8.2. Assume that (1.1) is strictly hyperbolic. Given any data U_, Uy with |Uy — U_|
sufficiently small, there ezists a function of bounded variation U(£) defined on (—00,00) such that

U(%) is a weak solution of the Riemann problem for (1.1).

Next we investigate the structure of the emerging solution U. It is instructive to use the
correspondence between functions of bounded variation and finite signed Borel measures on IR
(Folland [F, Sec 3.5, Sec 7.3]). Let u be the (vector valued) measure generated by the right

continuous function of (normalized) bounded variation (U(£+)—U-). Consider now the functions

3
(8.16) 0= [ o0

In view of (3.25) the family {®.} consists of increasing uniformly bounded functions. Therefore
®,. converge along a subsequence to an increasing function @ pointwise on the reals. The measures
generated by ®;(£4) are denoted by ¢y; they are positive measures with total mass one.

Introduce the measures associated with the functions U! and ¢, defined by

<us,«/)>=/]R UL(E) - p(€) de,

(8.17)
< Grerx > = /]R ore(E) x(€) dE,

where ¥ € [C.(IR)]Y, x € C,(IR) are continuous functions with compact support. Then (3.25),
(7.19), (8.10) and Helly’s convergence theorem imply

/U;-wdw/ bedU =< >, forpe[Co@)",
(8.18) R R
‘/IR(Pksté‘_)/lR Xd‘I’k=<¢k,X>, fOIXGCc(IR)'

In the language of functional analysis g, — p and ¢x. — ¢ weak-x in measures.

Using (8.18) we can express < p,% >= — [ U ¢'d€ for test functions ¥ € [CLHR)]N. Note
that £ ¢ supp  if and only if there is an open interval I 3 £ such that < g, >= — [ U-9'd{ =0
for ¢ € [CY(I)]N. This is in turn equivalent to the function U being a.e. equal to a constant vector
on I. Consequently supp u coincides with the region in the {-domain where U is not a constant

state. From (8.7) it follows that p is absolutely continuous with respect to Z,C’__,l ¢r and that
supp ¢ C [Ak—, Akt]

N N
suppp C U suppdx C L = U[)\k_, Ak+] -
k=1 k=1

(8.19)
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The following proposition states an important property of @, that incorporates admissibility

restrictions induced by the self-similar viscosity. In preparation, recall that

oy
e e ke
(8.20) Pke = W
where
£
(8.21) 5l®) = [ 8= M(Uele))ds,
Pke

and assume (by restricting to a further subsequence) that pr. — pi as € — 0. Using (8.1), (Co)
and the Ascoli-Arzela theorem we deduce that

€ 3
(8.22) gre(€) = / s — Ap(Uc(s))ds — / s — A(U(3)) ds =: gi(€)

k
uniformly on compact subsets of (—o00,00). We show that points in the support of ¢, are global

minima for the function gj.

Proposition 8.3. If £ € supp ¢ then gx(¢) > gk(€) for ¢ € (—o0,00).

Proof. The proof has two steps. First, fix any £ € IR and @ > 0 and consider the set

(8.23) A={CeR : gk(¢) - gr(§) < —a < 0}

Since gy is continuous either A is empty or it has positive Lebesgue measure m(A). We will prove
Claim: If m(A) > 0 there exists an open interval I 3 £ such that < @&, x >= 0 for any x € Cc(I).

As a result, if m(A) > 0 then £ ¢ supp ¢x.
To establish the claim, observe first that

(324) 94(0) ~ 94(6) 2 5(¢* ~ €) ~ max{IAe-, [Mex Y€~ €

implies gx(¢) — oo as |¢| = oo and A is contained in some compact interval [a,b]. Fix § > 0 such
that for 8 € (£ — 6,€ + §) we have |gx(£) — gx(6)] < §. By virtue of (8.22), there is £o > 0 such
that if £ < go then

(8.25) lgke(8) — g(0)] < % for 0 € AU(E—6,€+6).

From (8.23) and (8.25) we deduce, if 8 € (€ — 8, + 6), € < €0 and ( € A then
9ke(€) = gre(6) < gr(C) — g1 () + lgx(€) — 9x()|

(8.26) 3
+ |gk5(0) - gk(o)l + |gke(C) - gk(()l < —-2' .
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In turn (8.20) and (8.21) yield for 8 € I := (§ — 6,£ + 6)

1 < e %
Taexp{=L(gre(0) — gre(8))} dC = m(A) °
Let x € Co(I). Then (8.18) and (8.27) imply

(8.27) 0 < wre(0) <

(8.28) <hox>= [ ouOXO® =0, a5 e =0,

Hence, < ¢, x >= 0 for x € Co(I), and the proof of the claim is complete.
Suppose next that £ € supp ¢x. Then A is empty for any o > 0 and, hence, gx(¢) > gx(¢) for

any ¢ € (~00,00). 3
The minimization properties for the g yield information on the structure of U. In particular,

a weak form of the Lax shock conditions is induced at points of discontinuity.

Proposition 8.4. Let £, &' € supp p N [Ax—, Axq] with € < ¢'.
(a) If€ € C then

(8.29) £ = A(U(9)) -
(b) If € € S then U satisfies at & the jump conditions (8.3) and the inequalities
(8.30) A(UE+)) < €< A(U(E-)) -

(c) If €, €' € supp p N [Ay Akq] then M(U(E+)) = &, A(U(E'-)) = €. Moreover, for any point
0 € (&€ |
6 =x(U6) of 6€C,

(8.31)
M(UB+)) = 0= A\(UB-)) if 0€S.

Proof. The function gy in (8.22) is continuous and has the behavior gx(§) — oo as [{] — oco. Since

U is of bounded variation, the limits

g g® _ 1 (¢ .
(32  Jim SO - i /6 s = M(U(s)) ds = € = M(U(E))

exist and imply the derivative %‘15& exists and is continuous for £ € C, while only the right and

left derivatives exist for ¢ € S. Fix a point £ € supp g N [Ak—, Ak+]. It follows from (8.19) and
Proposition 8.3 that £ € supp ¢x and that gx(¢) > gx(€) for ¢ € IR. In turn, (8.32) yields

(8.33) E-M(U(EH) 20, £-M(U(£-) 20,
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which leads to (8.29) for £ € C and to (8.30) for £ € S.
It remains to show (c). Let £, &' € supp g N supp ¢y with £ < &'. Then £, ' are both global
minima for gx with gx(¢) = gi(£'). We claim:

(8.34) 9x(6) = gi(§) for any 0 € (£,¢).

If (8.34) is violated at some point, there exist a, b with £ < @ < b < ¢ such that

(8.35) gr(a) = gr(b) = gk(€) , gx(0) > gk(€) for a<b<b.

At the points a, b we have
Ak(U(a+)) < a < Ax(U(a—))

(8.36)
AR(U(b+)) < b < A(U(b-)) -

On the other hand at any 6 € (a,b) the set A = {( € IR : gx({) — gx(f) < —a} is nonempty for
some a > 0. Proposition 8.3 and (8.19) then imply 6 ¢ supp ¢x and the function U(§) remains
constant on the interval (a,b). Hence M\(U(a+)) = Ax(U(b-)) and the inequalities (8.36) yield
b < a. This contradicts @ < b and (8.35) follows. g

In summary, the region where U is nonconstant consists of (at most) N disjoint closed intervals
I, = [ax,bi], k =1, ..., N. Each I, is associated with one characteristic speed Ax(U) and could
be empty or consist of just a single point. The function U takes constant values on the complement
of UkN=1 I, and has the properties listed in Proposition 8.4 at points of I, . The emerging solution

consists of k-wave fans separated by constant states. Next we use the weak form of (8.2)

631)  —€U(EH) +0U(8-) + FO(E) - FOO-)+ [ Uds=0 € 0em.

in conjunction with relations (8.29 — 8.31) to obtain a fuller description of the behavior of U on

the wave fans.

Proposition 8.5 Suppose that Iy, = [ax,by] is a full interval, ax < by.
(i) For each £ € [ak,bi) such that VAL(U(E+)) - re(U(E+)) #0

(U(E+h=) - U(E+)) = < re(U(E4))

, 1
(8.38) lim - — VA(U(EH)) - re(U(E+))

h—0,h>0 h

(i) For each/f € (ax,bi] such that VAL(U(¢-)) - ri(U(€=)) #0

(8'39) h_}é{r}l«) % (U(E + h+) - U(f")) = V)\k(U(f—))l- Tk(U(f")) Tk(U(f"))
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Proof. We show (i). Fix ¢ € [ak,bi) and let h > 0 such that £ + h € I,. The weak form (8.37)
taken between the points £+ and £ + h— gives

[ - €1+ VFU(E+)] (U(E+h=) - UE))
(8.40) =~ [F(U(£ + h-)) — F(U(&+)) = VF(U(E+)) (U(€ + k=) = U(¢+)) ]
h
- /€ ° [U(s) = U(¢+)] ds+ h (U(E + k=) — U(E+))

The increment (U(€ 4+ h—) — U(£+)) is expanded in the basis of right eigenvectors
(8:41) w(h) = U(€ + h=) = U(E+) = D wilh) (U (E+).

Note that for a function U of bounded variation w(k) — 0 as k — 0+, and that by (3.8)
(8.42) wi(h) = Li(U(E+)) -w(h).

Taking the inner product of (8.40) with [;(U(£+)) and using (3.6), (8.42) and the Taylor expansion,

we obtain
h
(8.43) [—€+ X(U(&+))] wi(h) = O(lw(R)[*) + 0(/0 jw(s)|ds) + O (h|w(R)]),

On account of Proposition 8.4 and the strict hyperbolicity of (1.1), the coefficient [—&+ A;(U(£4))]
is nonzero for 7 # k but vanishes for i = k.

Next, using (8.29 — 8.31) and the Taylor expansion of Ax, we see that
A(U(€+h=)) = Ap(U(E+)) = R
= VA(U(E4)) - (U(E + k=) = U(E+)) + O (lw(B)*) -
If we set jx = VA(U(€4)) - ri(U(€+)), jr # 0 by hypothesis, and use (8.44), (8.41) and relations

(8.43) for ¢ # k, we arrive at the estimate

jewr(h) = b =0( ) |wi(h)|) + O(lw(R)]?)

itk

h
= 0(jw()?) +0( [ (o)l ds) + O(h (M.

(8.44)

(8.45)

Adding (8.43) for i # k with (8.45) gives

o(h) : = |jkwe(h) = bl + Y |wi(h)|

iZk
h
(8.46) = O( (o] + ) () + O( [ o)l )
h
= O((Jo(h)| + h) (k) + 0(/0 o(s)ds) + O(h?).
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Since w(h) — 0 as h — 0+, we can choose § sufficiently small so that for 0 < h <6
h
(8.47) o(h) < Ch* +C / o(s)ds
0

The integral inequality, in turn, yields

(8.48) 0<ph)<C'h?  forO0<h<$
and thus

. wilh) : ow(h) 1
(8.49) hl—l»%l+ = 0 fori#k, hliI{)l-{- h S

This shows (8.38). The proof of part (ii) is virtually identical. g

Proposition 8.5 implies that U has right and left derivatives at any point ¢ which is not an
accumulation point of S. If such a point £ belongs to C then U is Lipshitz there, and if, in addition,
it is an interior point of I, then f is differentiable there. It also completes the picture regarding

the structure of the wave fans. We distinguish the following cases:

(i) If I, consists of a single point then the solution is a shock wave satisfying the weak form of

the Lax shock conditions (8.30).

(ii) If I), is a full interval of points in C the solution is a k-rarefaction wave (provided that

Vi -7k # 0 on I, which is anyway necessary for rarefactions).

(iii) In general I), consists of an alternating sequence of shock waves and k-rarefaction waves such

that each shock adjacent to a rarefaction from one side is a contact discontinuity on that side.
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9. Self-similar viscous limits and shock profiles

In this section we discuss the relation between self-similar viscous limits and shock profiles for
strictly hyperbolic systems. It was conjectured by Dafermos [D;] and Tupciev [Tuz], and proved
for systems of two equations [D;] that self-similar viscous limits have the internal structure of
traveling wave solutions. We pursue here the question in the context of general systems.

Let £ be a point of discontinuity of U and note that U({+) satisfy thé Rankine-Hugoniot
conditions (8.3). Consider a sequence of points {¢.} with the property £ — £ as ¢ — 0. Define

the function
(9'1) VE(C) = Us(fs +é C)a —00 < (<o00.

This introduces a stretching of the independent variable centered around the point &, a shift of

the shock speed £. The uniform estimates (Cy), (§) imply that V. is uniformly bounded and that
(9.2) TVC Ve() = TV( UE(EE +e ) = TV{ UE() < C.

Using Helly’s theorem and a diagonal argument we establish the existence of a subsequence and a

function V such that
(9.3) U +¢¢) — V(¢) pointwise for —oo < (<00
Proposition 9.1. Let £ € S and suppose that {£.} is a sequence of points with §, — . Then the

function V(¢) defined in (9.3) is continuously differentiable and satisfies on (—00,00) the traveling

wave equations

(9.4) 1V - UE) |+ LFV) - FOE-)] =

with initial conditions

(9.5) V(0) = lim U, (&) -

The limits (Erjr:loo V(¢) =: Vi exzist, are finite, and V., V_ satisfy the algebraic equations
(9.6) —€£[V-U(E-)]+[F(V) - F(U(£-))] =0.

Proof. We evaluate (8.8) between the points £, +¢¢ and 6 and then integrate the resulting equation

in 8 between £ and £ + 4, for some § # 0, to arrive at

1 [&+¢
[—(Ee +¢€ C)Ue(ge 4 ¢ C) + F(Ue(ge + £ C))] - 5/6 [_0(]5(9) + F(UE(G))] do
(9.7)
1 [E+6 péeteC d L opers
* 5/5 /9 Ue(r)drdf = EZ(U‘(& +e0)) - eg/ﬁ U'(8)do .

56




After an integration in { we get

¢ 1 &+6
[ = e eavutec s o) + PUec+ e s =5 [ [-000) + FU@)] a0

(9.8) :
1 € [EF8 pletes e¢ 45 ’

= () drdfds = U.(&. —Uu(E) - = U'(6)do .

v [ vndranis = vt +e0) - Ue - 5 [ 00

Letting ¢ — 0 and using (9.3), (Cs), (8.1) and (8.10) we deduce

4 1 £+6
[1-eve+ rvnas-¢ [ (-ov) + Fw @)1 40
(9.9) e e
+03 /E /o U(r)drdd = V(C) - V(0)

From (9.9), by letting consecutively § — 0+ and § — 0—, we obtain

¢
010 [ (=€)~ Ulek) + FV () - FU(ER)] ds = V(O - V(0).

It follows from (9.10) that V() is a continuously differentiable function that satisfies the
traveling wave equations (9.4) and the initial conditions (9.5). Since V is of bounded variation on

IR, the limits ] ].il’il V(¢) =: V4 exist and are finite. Also, for any integer n
—300

n+1
1) [T [ €V - V() + FV(s) - FUE-) ] ds = Vin+ 1)~ V()

Taking the i-th component of (9.11) and using the mean value theorem, we deduce there are t,

with n < t}, < n+ 1 such that
(9.12) —€(Vi(t) ~ U'(€=)) + F(V(ty) - FI(U(E-) = Vi(n+1) - Vi(n), i=1,..,N.

Letting n — oo shows that Vj is an equilibrium for (9.4). Similarly, V_ satisfies (9.6). g

The function V' as well as the limiting values Vi depends on the choice of the sequence {£.}.
For several choices of {£,} it may happen that the traveling wave disintegrates to a constant
solution. Two questions arise: (i) Is it always possible to choose {{.} so that the resulting V does
not disintegrate to a constant solution of (9.4). (ii) What is the relation of U(¢-), U(£+) and

nontrivial heteroclinic orbits.

Proposition 9.2. Let £ € S be fized and suppose the set of solutions to (9.6) is not connected.
There exists a sequence of shock shifts {€.} such that the resulting V in (9.3) is a nontrivial

heteroclinic (or homoclinic) orbit.
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Proof. Suppose the solution set of (9.6) with £ fixed is contained in two open sets O_ > U (&-)
and O; > U(&+) with O- N Oy = 0. Because of (Cj) we may restrict attention to a ball By
containing U,. For a large integer n it is U(6 — ) € O_ and U(¢ + 1) € 0,. Choose ¢, such
that U, (6 - 1) € O_, U, (£ + 1) € O;. There exists {£,} satisfying { — L<g, <€+
and U, (¢,) € By — (O- U O4). Along a subsequence £, — & and U, (&,) — V(0) with
V(0) € O_ U O,. The resulting V is a nonconstant solution of (9.4) connecting two equilibria V_

and V4. g

The hypothesis in Proposition 9.2 is violated only for shocks associated with a linearly degen-
erate characteristic field : VAx(U)- rx(U) = 0 for all U (c.f. Section 10) . Addressing (ii) is quite
complicated at the full level of generality. We give one result indicating what can happen if there

is a finite number of equilibria in By, the range of variation of U..

Proposition 9.3. Let £ € S and suppose that (9.6) has a finite number of solutions in Bp. There

ezists a subsequence £, — 0 and choices {£1c, }, {&2¢, } of the shock shifts such that &ie, < &2e,,

€le,, - &, £2e,. - £,
(9'14) Ue.. (Ele,. + EnC) - Vl(C)a Ue,. (625,, + 5n<) i VZ(C) ’ pointwise for —o0 < C <00,

and the resulting Vy, V3 are solutions of (9.4) that satisfy V1(—o00) = U(£-), Va(400) = U({+).

Proof. Let Bjs be the ball where the solutions U, range, and suppose (9.6) has a finite number
of solutions U(£~), U(€+) and Uy, ..., Uy. Fix two open balls B_, By and an open set O with
the properties: B_, By and O lie inside Bas, B_ is centered at U(£—), B is centered at U(£+),
O contains Uy, ..., Uy, and the distances among any two of the sets B_, By and O are strictly
positive. Since U is of bounded variation, we can fix § > 0 such that U(8) € B_ for § € [ - §,£)
and U(0) € By for 0 € (&,€ + 6.

Consider a convergent sequence : U, — U pointwise on IR. In the sequel we will be extracting
appropriate subsequences that are denoted again by U, . Choose ng such that U, (£ —§) € B_,
U, (£ + &) € By for n > ng. For each n > ny choose points at, A%, by, By, 1 =1, ..., K(n), in
the interval I5 = [£ — 6, + 8] to be respectively: al = £ — §, b}, the first point where U, enters
the ball By, AL the last point in (al,bl) that U,, exits B_, a2 the first point after b} that U,
enters the ball B_ (if applicable), B the last point after b} that U, exits By, and so on until
finally B,If ) — & + 6. These are defined as follows:

b, =inf{# > a’,: U, (0) € By}, A, =sup{f¢€(a,b},): U. (0)€B_},
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att! = inf{0 > b} : U, (9) € B}, B =sup{f € (b,,a}"): U, (6) € B4+};

if in the s-th step a’t! is not well defined then : = K(n) and B}, = £+ 6. Since U,, is of uniformly
bounded variation, it can go back and forth between B_ to B} at most a finite number of times,
thus K(n) is bounded. By restricting to subsequences we may assume K (n) is some positive integer
K for large n, and that a}, — a', A}, — A*, b}, = b' and B, — B*,1=1, .., K,as n — o0.

By construction @}, < A%, < b}, < B! < a%t! and U,, has the behavior U, () € Bps — By on
(a%, AL), Ue,(0) € Bayr — (B- U By) on (AY,b) and U, () € By — B_ on (b, B}). As a result
the limits at, A*, b* B* have the following properties: (i) a* < A* = b* < B* = a*t1, (ii) if B* < ¢
then A* = b* = B* = a'*!, and (iii) if ' > £ then B*~! = @' = A* = b*'. To see (ii) suppose that
B' < &; if A* < a**! there is 6 < ¢ such that U, (8) ¢ B_ for large n. Passing to the limit we see
that U(0) ¢ B_ a contradiction. The rest are proved by similar arguments.

In what follows we fix 7 to be the first index that B’ = £ and k to be the last index that

a* = £. Then we have the ordering
(9.15) <A =V=B=..=t=..=a" = AF =b* < B¥
for any index between j and k.
Consider first the case that (9.6) has precisely two solutions U(é~) and U(£+). Set
fie, = A%y Vie, (€) = Ue, (47 + (),

625,. = bﬁ ’ V2e,. (C) = Uc,. (bﬁ + EnC) .

Then Vi, (0) lies on dB_ and Vs, (0) lies on dB,. Along a subsequence Vi, and V;., converge

(9.16)

pointwise to a solution of (9.4) and the limits V;(£o0) = Vi exist and are finite. Since no solutions
of (9.6) lie on the boundaries of B_ and B, the resulting traveling waves are nontrivial. From the

definition of V;., and Vi, follows that
I _ AJ k _ pk
O1) Vi@ ¢ By for BPh<cc0, Vi (O¢B. for 0<(< i Tn

n En

Since lim @, = a’ < £ = lim A, and lim b%¥ = ¢ < B* = lim Bk,
(9.18) VilQ)¢ By for —o0< (<0, Vo({)¢gB_ for 0<(< .

As U(¢-) is the only equilibrium in Bps — By and U(£+) the only equilibrium in By — B_ it
follows V1(—00) = U(€-) and Va(+00) = U(£+).
Suppose next that (9.4) has more than two equilibria. If U, never enters O the previous proof

shows the desired result. If U, enters O, we restrict attention to the interval [a,b2] and proceed
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as follows: Note that U, (0) € By — By on [a},b) and U (b}) € B;. As in the previous step
we choose points ¢, < C% < d', < DY, ¢ = 1, ..., K(n), with the properties: ¢}, = a}, dy, the first
point after ¢l that U, enters O, CL the last point before d, that U,, exits B_; if Ue, reenters B_
then we define c2 to be the first point after d, that Uy, enters the ball B_, define D}, to be the last
point before c2 that U, exits O, and reiterate the above procedure; if U,, does not reenter B_
then we set D! to be the last point of exit from O before touching 3B, and stop at this step. As
the sequence {U,,_} is of uniformly bounded variation the process will conclude in a finite number
of steps. By restricting to subsequences we may assume K(n) = K < oo, ¢;, — ¢', C}, — (",
d:, = d*, D}, — D'. Again if d* < £ for some 1 then C* =d' = D' = c't1. Let [ be the first index
such that D! = €. Then D1 =l < C'=d' = D' = £. If we set

(919) 515,, = Cyl; ’ Vle,. (C) = Ue.,(C,ll + enC)

then Vi, satisfies
. cl _ Cl
(9.20) Vie ,(() ¢ OU B, for -—"—6—" <(<0

n

and the resulting traveling wave V; has the property Vi(—oo) = U(£—). A similar construction

shows the second part of the Proposition. g

Proposition 9.3 shows that if £ is a point of discontinuity of a solution U arising via self-similar
viscous limits then there exists one heteroclinic orbit of (9.4) that emanates from U({~) and one
that concludes to U(£+). It is expected that in general this will be the same heteroclinic orbit.
However, if more than two states in Bjs satisfy the Rankine-Hugoniot conditions (9.6) at a given
£ € 8, or if multiple heteroclinic connections between two equilibria are possible, then the precise
relation between self-similar limits and shock profiles requires a detailed analysis of the heteroclinic
orbits (the proof is suggestive as to what possibilities must be excluded). In specific examples it
usually happens that there is a single shock profile connecting U(¢—) to U(é+). It is however
possible that there are intermediate states V;, j = 1,...,J, satisfying (9.6) and a chain of shock
profiles with the same shock speed ¢ that connect succesively U(é—) to V;, each of the points
V; to the next, and V; to U(£4). The latter situation occurs for the equations of elasticity in
the presence of multiple inflection points in the stress-strain relation, for specific positions of the

Riemann data relative to the stress-strain curve [Tzy].
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10. Comparisons with the classical solution of the Riemann problem

In this section we compare the classical solution of the Riemann problem with the solution
obtained via self-similar viscous limits. For systems of strictly hyperbolic conservation laws the
classical solution of the Riemann problem is based on a detailed study of elementary solutions of
rarefaction waves and shock waves, and was established, for |U; — U_| small, by Lax [La;] in the
genuinely nonlinear case and by Liu [Lij, Liz] in the general case.

Fix Up. Let Ry = Ri(Up) be the integral curves of the vector field r, emanating from Up.
Rarefaction wave solutions take values on the curves Rx. Shock waves emerge by solving the

Rankine Hugoniot conditions
(10.1) s(U - Uo) = F(U) - F(U).

For U near Uy, the set of solutions of (10.1) consists of N smooth curves Sy = S(Up) tangent to
Ri(Uo) at Up, k =1, ..., N. Each Sy is associated with the k-th characteristic field, it is defined
by parametric equations U = Ur(7) and s = si(7) for |7| small, and the parametrization may be
arranged so that
U(0) = Uo, U(0) = rx(Uo),
(10.2) 1(0) = M(U0),  3k(0) = 5 VA(U0) - 7i(T)
Ak-1(Uk(7)) < sk(7) < Aes1(Uk(7)) -
A state Ux(7) € Si(Up) gives rise to a shock wave solution with speed si(7), left state Up, and right

state Uy(7). Liu [Li,] performed a detailed study of the shock curves and proposed the following
shock admissibility criterion. A shock (Up, Uk(7), k(7)) is admissible if it satisfies

(E) sk(1) < sg(t) fort between 0 and 7.

Using (E) Liu obtained a unique solution the Riemann problem.

Consider the solution U constructed via self-similar viscous limits in the previous sections.
U (&) takes values in a small ball B,(U_), the wave speeds Ax(U(€)) are separated, and U(£) has
the properties indicated at the end of Section 8. Each wave fan is studied separately and we

distinguish three cases:

(i) Ax is genuinely nonlinear : VA(U) - r(U) # 0 for all U.
For a genuinely nonlinear characteristic field the shock speed sx(7) is increasing in one direction

of the shock curve Si(Up) and decreasing in the opposite direction. Contact discontinuities are
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excluded for weak shocks. The behavior of U on I, simplifies considerably: Either Iy, is empty,

or I, consists of a single point of jump discontinuity £ and U satisfies the Lax shock conditions

(10.3) M(U(E+)) < € < A(U(E-))s

or I, is a full interval of points of continuity and the solution is a k-rarefaction wave on I,.
Therefore, for genuinely nonlinear and strictly hyperbolic systems, the emerging structure of U is

identical to that determined by Lax [Lay).

(ii) Ak is linearly degenerate : VAg(U) - r(U) = 0 for all U.
For a linearly degenerate characteristic field the k-th shock curve emanating from Up is given by
U = Ux(7), s = sk(r) where

A

k(1) = 1(UK(r)) , Un(0) = U

(10.4) sk(r) = Ak(Uo)

A version of the converse is also true: If (10.1) has a curve of solutions U(7) corresponding to
s(t) = s fixed then U(7) = ri(U(7)), so = Ae(U(7)) for some k, and the k-th field is linearly
degenerate. Since )\ remains constant on the curves Ry, rarefaction wave solutions are not possible
for linearly degenerate characteristic fields. A close look in the proof of Propositions 8.4 and 8.5
shows that it is not possible that I, is a full interval. Therefore, either Iy, is empty, or it consists

of a single point of jump discontinuity and U is a contact discontinuity.

(iii) The curves Ry intersect the set {U : VAx(U) - ri(U) = 0} at discrete points.
The solution U cannot be further simplified in this case. The relation with the Liu shock ad-
missibility criterion (E) is established indirectly, using Proposition 9.3 on the relation between
self-similar limits and shock profiles, in conjunction with results of Liu [Lis], Majda and Pego [MP]
on the relation between shock profiles and (a strict inequality. version of) condition (E£). Majda
and Pego [MP, Theorem 3.1] prove that given two states U(¢—) and U(£+) in a small ball B,(U-)
satisfying the Rankine-Hugoniot conditions for some speed &, a shock profile lying in B,(U_) ex-
ists connecting U(¢—) and U(&+) if and only if condition (E) is satisfied as a strict inequality.
Moreover, there exists at most one trajectory V(¢) of (9.4) connecting U(£—) and U({+) which
remains in B,(U_) for all (.

Fix £ € SN I, and consider the set of all solutions to the Rankine-Hugoniot conditions that
are compatible with (8.30). If U(£—) and U(£+) are the only states with this property then there
is a shock profile connecting them and the shock speed ¢ satisfies the strict condition (E). If there
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are more than two such solutions of (9.6) then there is a shock profile in B, (U_) connecting U(£-)
to some state V; and another shock profile connecting a state V; to U({+). It is expected that in
this case there will be a chain of shock profiles that connect U(£—) through intermediate states

with (eventually) U(£+).
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